当前位置: 首页 > news >正文

计算机视觉之图像特征提取

图像特征提取是计算机视觉中的重要任务,它有助于识别、分类、检测和跟踪对象。以下是一些常用的图像特征提取算法及其简介:

  1. 颜色直方图(Color Histogram)

    • 简介:颜色直方图表示图像中各种颜色的分布情况。通过将图像中的像素分成颜色通道(如RGB)并计算每个通道的颜色值分布,可以捕捉到图像的颜色信息。
    • 应用:颜色直方图常用于图像检索、图像分类和图像匹配等任务。
  2. 局部二值模式(Local Binary Pattern,LBP)

    • 简介:LBP是一种用于纹理特征提取的方法。它通过比较每个像素与其邻域像素的灰度值来构建特征。LBP特征对纹理的变化和结构有很好的描述能力。
    • 应用:LBP常用于人脸识别、纹理分类和目标检测等任务。
  3. 方向梯度直方图(Histogram of Oriented Gradients,HOG)

    • 简介:HOG是一种用于物体检测的特征提取方法,特别适用于行人检测。它通过计算图像中每个像素的梯度方向并构建梯度方向的直方图来表示图像。
    • 应用:HOG广泛应用于行人检测、目标识别和行为分析等领域。
  4. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)

    • 简介:SIFT是一种用于检测和描述图像中局部特征的方法。它对图像的尺度、旋转和亮度变化具有不变性,因此在各种条件下都表现良好。
    • 应用:SIFT广泛用于特征匹配、物体识别和图像配准等任务。
  5. 加速稳定特征(Speeded-Up Robust Features,SURF)

    • 简介:SURF是一种用于图像特征提取的快速算法。它结合了SIFT的特点,并使用积分图像来加速特征检测和描述子计算。
    • 应用:SURF适用于实时应用,如实时目标跟踪和图像拼接。
  6. 卷积神经网络特征(Convolutional Neural Network Features)

    • 简介:基于深度学习的方法,如卷积神经网络(CNN),已经取得了在图像特征提取任务上的显著成功。通过在预训练的CNN模型上提取特征向量,可以获得强大的图像表示。
    • 应用:CNN特征广泛用于图像分类、目标检测、图像生成等各种计算机视觉任务。

历程:

颜色直方图 (Color Histogram) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg");cv::Mat hist;// 将图像转换为HSV颜色空间cv::cvtColor(image, image, cv::COLOR_BGR2HSV);// 计算直方图int histSize = 256; // 直方图的大小float range[] = {0, 256}; // 像素值范围const float* histRange = {range};cv::calcHist(&image, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange);// 打印直方图for (int i = 0; i < histSize; i++) {std::cout << "Bin " << i << ": " << hist.at<float>(i) << std::endl;}return 0;
}

局部二值模式 (Local Binary Pattern, LBP) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::Mat lbpImage;// 计算LBP图像cv::Ptr<cv::ximgproc::LBP> lbp = cv::ximgproc::createLBPFast();lbp->compute(image, lbpImage);return 0;
}

方向梯度直方图 (Histogram of Oriented Gradients, HOG) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::HOGDescriptor hog;// 设置HOG参数hog.winSize = cv::Size(64, 128); // 检测窗口大小hog.blockSize = cv::Size(16, 16); // 块大小hog.blockStride = cv::Size(8, 8); // 块的步幅hog.cellSize = cv::Size(8, 8); // 细胞大小// 计算HOG特征向量std::vector<float> descriptors;hog.compute(image, descriptors);return 0;
}

加速稳健特征 (Speeded-Up Robust Features, SURF) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create();// 检测关键点和计算描述子std::vector<cv::KeyPoint> keypoints;cv::Mat descriptors;surf->detectAndCompute(image, cv::noArray(), keypoints, descriptors);return 0;
}

尺度不变特征变换 (Scale-Invariant Feature Transform, SIFT) 示例

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE);cv::Ptr<cv::xfeatures2d::SIFT> sift = cv::xfeatures2d::SIFT::create();// 检测关键点和计算描述子std::vector<cv::KeyPoint> keypoints;cv::Mat descriptors;sift->detectAndCompute(image, cv::noArray(), keypoints, descriptors);return 0;
}

卷积神经网络特征 (Convolutional Neural Network Features) 示例

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>int main() {cv::Mat image = cv::imread("image.jpg");cv::dnn::Net net = cv::dnn::readNetFromCaffe("deploy.prototxt", "model.caffemodel");// 预处理图像(归一化、尺寸调整等)cv::Mat blob = cv::dnn::blobFromImage(image, 1.0, cv::Size(224, 224), cv::Scalar(104, 117, 123));// 设置输入图像net.setInput(blob);// 前向传播并获取特征向量cv::Mat features = net.forward();return 0;
}

相关文章:

计算机视觉之图像特征提取

图像特征提取是计算机视觉中的重要任务&#xff0c;它有助于识别、分类、检测和跟踪对象。以下是一些常用的图像特征提取算法及其简介&#xff1a; 颜色直方图&#xff08;Color Histogram&#xff09;&#xff1a; 简介&#xff1a;颜色直方图表示图像中各种颜色的分布情况。通…...

【面试经典150题】移除元素·JavaScript版

题目来源 大致思路&#xff1a;遍历数组&#xff0c;如果遇到值为val的元素&#xff0c;使用数组最后一个元素替换它。详细过程&#xff1a; /*** param {number[]} nums* param {number} val* return {number}*/ var removeElement function(nums, val) {let i0,nnums.leng…...

Cesium 相机的三种放置方式

文章目录 Cesium 相机的三种放置方式第一种&#xff1a;setView 计算视角1. Cartesian3 方式2. Rectangle 方式 第二种&#xff1a;flyTo第三种&#xff1a;lookAt Cesium 相机的三种放置方式 Cesium 提供了三种方式对相机的位置进行摆放 第一种&#xff1a;setView 计算视角 …...

看了我这篇帖子,你还会觉得制作电子杂志很难吗?

如果你也像我一样笨手笨脚的不会设计排版制作杂志也没关系&#xff0c;用FLBOOK就能在线制作电子杂志&#xff0c;效果极好&#xff01; 工具&#xff1a;FLBOOK 步骤如下&#xff1a; 1.打开FLBOOK在线制作电子杂志平台 2.点击开始创作&#xff0c;有四个创建作品的方式&…...

SRE 与开发的自动化协同 -- 生产环境出现 bug 自动生成异常追踪

简介 生产环境 bug 的定义&#xff1a;RUM 应用和 APM 应用的 error_stack 信息被捕捉后成为 bug。 以 APM 新增错误巡检为例&#xff0c;当出现新错误时&#xff0c;在观测云控制台的「事件」模块下生成新的事件报告&#xff0c;捕捉为 bug。同时利用 Dataflux Func 创建异常…...

【简单认识Docker基本管理】

文章目录 一、Docker概述1、定义2.容器化流行的原因3.Docker和虚拟机的区别4.Docker核心概念 二、安装docker三、镜像管理1.搜索镜像2.下载&#xff08;拉取&#xff09;镜像3.查看已下载镜像4.查看镜像详细信息5.修改镜像标签6.删除镜像7.导出镜像文件和拉取本地镜像文件8.上传…...

设备管理系统是什么?的修设备管理系统有什么功能?

随着计算机技术的迅速发展和移动互联网的商业化和社会化应用&#xff0c;设备的种类和数量急剧增加。如何利用先进的网络技术和快速更新的计算机设备来有效地收集和处理设备信息&#xff0c;建立以信息化为核心的管理体系&#xff0c;减轻管理和业务人员的数据处理负担&#xf…...

Docker安装并配置Pushgateway

Linux下安装Docker请参考&#xff1a;Linux安装Docker 简介 Pushgateway是Prometheus的一个组件&#xff0c;prometheus server默认是通过Exporter主动获取数据&#xff08;默认采取pull拉取数据&#xff09;&#xff0c;Pushgateway则是通过exporter主动方式推送数据到Pushg…...

汽车OTA活动高质量发展的“常”与“新”

伴随着车主的频繁崔更&#xff0c;车企除了卷硬件、拼价格&#xff0c;逐渐将精力转移到汽车全生命周期的常用常新。时至下半年&#xff0c;车企OTA圈愈发热闹&#xff0c;以新势力、新实力为代表新一代车企&#xff0c;OTA运营活动逐渐进入高质量发展期。 所谓高质量&#xf…...

C++信息学奥赛1121:计算矩阵边缘元素之和

题解&#xff1a;i0 or j0 or in-1 or jm-1 or in-1 or jm-1 代码&#xff1a; #include<iostream> // 包含输入输出流库 #include<cmath> // 包含数学函数库 using namespace std; // 使用标准命名空间int main() {int n,m;cin>>n>>m; // 输入…...

Android Selector 的使用

什么是 Selector&#xff1f; Selector 和 Shape 相似&#xff0c;是Drawable资源的一种&#xff0c;可以根据不同的状态&#xff0c;设置不同的图片效果&#xff0c;关键节点 < selector > &#xff0c;例如&#xff1a;我们只需要将Button的 background 属性设置为该dr…...

k8s集群中service的域名解析、pod的域名解析

前言 在k8s集群中&#xff0c;service和pod都可以通过域名的形式进行相互通信&#xff0c;换句话说&#xff0c;在k8s集群内&#xff0c;通过service和pod的域名&#xff0c;可以直接访问内部应用&#xff0c;不必在通过service ip地址进行通信&#xff0c;一般的&#xff0c;…...

Shell 编程快速入门 之 数学计算和函数基础

目录 1. 求两数之和 整数之和 浮点数之和 2. 计算1-100的和 for...in C风格for循环 while...do until...do while和until的区别 关系运算符 break与continue的区别 3. shell函数基础知识 函数定义 函数名 函数体 参数 返回值 return返回值的含义 return与…...

学习php中如何获取pdf文件中的文本内容

学习php中如何获取pdf文件中的文本内容 要使用PHP获取PDF文件中的文本内容&#xff0c;可以使用PDF解析库。以下是一些流行的PDF解析库&#xff1a; pdftotext&#xff1a;它是一个命令行工具&#xff0c;可以将PDF文件转换为文本文件。可以使用PHP exec()函数运行该工具。 FP…...

分布式数据库架构:高可用、高性能的数据存储

在现代信息时代&#xff0c;数据是企业发展的核心。为了支持海量数据的存储、高并发访问以及保证数据的可靠性&#xff0c;分布式数据库架构应运而生。分布式数据库架构是一种将数据存储在多个物理节点上&#xff0c;并通过一系列复杂的协调和管理机制来提供高可用性和高性能的…...

Python工具箱系列(四十)

使用gzip对数据进行压缩 这是python提供的压缩模块&#xff0c;便于用户对数据、文件进行压缩。功能类似于 GNU 应用程序gzip和gunzip。以下代码压缩一段字节流。 import gzip# 压缩一段英文 originstr The World Health Organization officially declared on Saturday that …...

【Hibench 】完成 HDP-Spark 性能测试

&#x1f341; 博主 "开着拖拉机回家"带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——&#x1f390;开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 &#x1f390;✨&#x1f341; &#x1fa81;&#x1f341; 希望本文能够给您带来一定的…...

【C++奇遇记】内存模型

&#x1f3ac; 博客主页&#xff1a;博主链接 &#x1f3a5; 本文由 M malloc 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f384; 学习专栏推荐&#xff1a;LeetCode刷题集 数据库专栏 初阶数据结构 &#x1f3c5; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如…...

Debootstrap 教程

文章目录 Debootstrap 教程安装 debootstrap使用 debootstrap运行 debootstrap进入新的系统结束语 Debootstrap 教程 debootstrap 是一个用于在 Debian-based 系统上创建一个基本的 Debian 系统的工具。它可以用于创建 chroot 环境、容器或者为新的系统安装做准备。 安装 deb…...

MySQL之InnoDB引擎

MySQL之InnoDB引擎 简介逻辑存储结构InnoDB架构内存架构缓冲池LRU List、Free List和Flush List更改缓冲区&#xff08;在5.x版本之前叫做插入缓冲区&#xff09;自适应hash日志缓冲区 磁盘架构System TablespaceFile Per Table TabspaceGeneral TablespceUndo TablespaceTemp …...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

土建施工员考试:建筑施工技术重点知识有哪些?

《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目&#xff0c;核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容&#xff0c;附学习方向和应试技巧&#xff1a; 一、施工组织与进度管理 核心目标&#xff1a; 规…...