Pytorch-day05-可视化-checkpoint
PyTorch 可视化
- 1、模型结构可视化
- 2、训练过程可视化
- 3、模型评估可视化
#导入常用包
import os
import numpy as np
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
import torchvision
import torch.nn.functional as F
# 自定义model
class DemoModel(nn.Module):def __init__(self):super(DemoModel, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
方法一 print 打印(模型结构可视化)
model = DemoModel()
#方法一:print打印(模型结构可视化)
print(model)
DemoModel((conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)
方法二 torchinfo
常用来查看模型输入输出和模型参数大小
torchinfo
#pip3 install torchinfo
- trochinfo的使用也是十分简单,我们只需要使用torchinfo.summary()就行了,必需的参数分别是model,input_size[batch_size,channel,h,w]
- 提供了模块信息(每一层的类型、输出shape和参数量)、模型整体的参数量、模型大小、一次前向或者反向传播需要的内存大小等
from torchinfo import summary
model = DemoModel() # 实例化模型
#方法二:torchinfo 查看 模型结构可视化
summary(model, (1, 3, 32, 32)) # 1:batch_size 3:图片的通道数 1024: 图片的高宽
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
DemoModel [1, 10] --
├─Conv2d: 1-1 [1, 6, 28, 28] 456
├─MaxPool2d: 1-2 [1, 6, 14, 14] --
├─Conv2d: 1-3 [1, 16, 10, 10] 2,416
├─MaxPool2d: 1-4 [1, 16, 5, 5] --
├─Linear: 1-5 [1, 120] 48,120
├─Linear: 1-6 [1, 84] 10,164
├─Linear: 1-7 [1, 10] 850
==========================================================================================
Total params: 62,006
Trainable params: 62,006
Non-trainable params: 0
Total mult-adds (M): 0.66
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.05
Params size (MB): 0.25
Estimated Total Size (MB): 0.31
==========================================================================================
方法三 Tensorboard (使用最多,可实现训练过程的可视化)
TensorBoard
- TensorBoard作为一款可视化工具能够满足 输入数据(尤其是图片)、模型结构、参数分布、debug的需求
- TensorBoard可以记录我们指定的数据,包括模型每一层的feature map,权重,以及训练loss等等
- 利用TensorBoard实现训练过程可视化
安装
pip install tensorboard
启动tensorboard
tensorboard --logdir=/path/to/logs/ --port=xxxx
- 其中“path/to/logs/“是指定的保存tensorboard记录结果的文件路径,等价于下面的“./runs”
- port是外部访问TensorBoard的端口号,可以通过访问ip:port访问tensorboard)
重点:
tensorboard --logdir=path1 与 writer = SummaryWriter(path1), 两者的目录路径要保持一致,否则tensorboard 上不能显示结果。
writer 与writer.add_graph()
# from tensorboard import SummaryWriter
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('./runs')
print(model)
DemoModel((conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)
#方法三:tensorboard查看
writer.add_graph(model,torch.rand(1, 3, 32, 32))
writer.close()
tensorboard 可视图
#超参数定义
# 批次的大小
batch_size = 16 #可选32、64、128
# 优化器的学习率
lr = 1e-4
#运行epoch
max_epochs = 2
# 方案一:指定GPU的方式
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 指明调用的GPU为0,1号# 方案二:使用“device”,后续对要使用GPU的变量用.to(device)即可
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 指明调用的GPU为1号# 数据读取
#cifar10数据集为例给出构建Dataset类的方式
from torchvision import datasets#“data_transform”可以对图像进行一定的变换,如翻转、裁剪、归一化等操作,可自己定义
data_transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])train_cifar_dataset = datasets.CIFAR10('cifar10',train=True, download=False,transform=data_transform)
test_cifar_dataset = datasets.CIFAR10('cifar10',train=False, download=False,transform=data_transform)#构建好Dataset后,就可以使用DataLoader来按批次读入数据了train_loader = torch.utils.data.DataLoader(train_cifar_dataset, batch_size=batch_size, num_workers=4, shuffle=True, drop_last=True)test_loader = torch.utils.data.DataLoader(test_cifar_dataset, batch_size=batch_size, num_workers=4, shuffle=False)
#训练&验证
writer = SummaryWriter('./runs')# Set fixed random number seed
torch.manual_seed(42)
# 定义损失函数和优化器
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
My_model = DemoModel()
My_model = My_model.to(device)
# 交叉熵
criterion = torch.nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(My_model.parameters(), lr=lr)
epoch = max_epochstotal_step = len(train_loader)
train_all_loss = []
test_all_loss = []
for i in range(epoch):My_model.train()train_total_loss = 0train_total_num = 0train_total_correct = 0for iter, (images,labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)# Write the network graph at epoch 0, batch 0if epoch == 0 and iter == 0:writer.add_graph(My_model, input_to_model=(images,labels)[0], verbose=True)# Write an image at every batch 0if iter == 0:writer.add_image("Example input", images[0], global_step=epoch)outputs = My_model(images)loss = criterion(outputs,labels)train_total_correct += (outputs.argmax(1) == labels).sum().item()#backwordoptimizer.zero_grad()loss.backward()optimizer.step()train_total_num += labels.shape[0]train_total_loss += loss.item()# Print statisticswriter.add_scalar("Loss/Minibatches", train_total_loss, train_total_num)print("Epoch [{}/{}], Iter [{}/{}], train_loss:{:4f}".format(i+1,epoch,iter+1,total_step,loss.item()/labels.shape[0]))# Write loss for epochwriter.add_scalar("Loss/Epochs", train_total_loss, epoch)My_model.eval()test_total_loss = 0test_total_correct = 0test_total_num = 0for iter,(images,labels) in enumerate(test_loader):images = images.to(device)labels = labels.to(device)outputs = My_model(images)loss = criterion(outputs,labels)test_total_correct += (outputs.argmax(1) == labels).sum().item()test_total_loss += loss.item()test_total_num += labels.shape[0]print("Epoch [{}/{}], train_loss:{:.4f}, train_acc:{:.4f}%, test_loss:{:.4f}, test_acc:{:.4f}%".format(i+1, epoch, train_total_loss / train_total_num, train_total_correct / train_total_num * 100, test_total_loss / test_total_num, test_total_correct / test_total_num * 100))train_all_loss.append(np.round(train_total_loss / train_total_num,4))test_all_loss.append(np.round(test_total_loss / test_total_num,4))
Epoch [1/2], Iter [1/3125], train_loss:0.144669Epoch [1/2], Iter [710/3125], train_loss:0.119339Epoch [1/2], Iter [1254/3125], train_loss:0.121789
比较
- 方法一 print(model),打印模型块得结构
- 方法二 torchinfo , 给一个输入大小, 提供模块信息更全,包含每一层的类型、输出shape 和参数量等。 (torchsummary 也有同样功能)
https://blog.csdn.net/weixin_43183872/article/details/108329776 - 方法三 tensorboard ,TensorBoard可以记录我们指定的数据,包括模型每一层的feature map,权重,以及训练loss等等
tensorboard 使用时,
tensorboard --logdir=path1 与 writer = SummaryWriter(path1), 两者的目录路径要保持一致,否则tensorboard 上不能显示结果。
writer 与writer.add_graph()
相关文章:
Pytorch-day05-可视化-checkpoint
PyTorch 可视化 1、模型结构可视化2、训练过程可视化3、模型评估可视化 #导入常用包 import os import numpy as np import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision.transforms import transforms import torchvis…...
实训笔记8.23
8.23笔记 8.23笔记一、Hive中函数1.1 Hive中内置函数1.1.1 数学函数1.1.2 字符串函数1.1.3 日期函数1.1.4 条件函数1.1.5 特殊函数 1.2 Hive的自定义函数1.2.1 自定义UDF1.2.2 自定义UDTF 二、Hive的压缩机制三、数据同步工具Sqoop的安装和使用3.1 sqoop的概念3.2 sqoop的核心功…...
2023年菏泽市中职学校技能大赛“网络安全”赛项规程
2023年菏泽市中职学校技能大赛 “网络安全”赛项规程 一、赛项名称 赛项名称:网络安全 赛项所属专业大类:信息技术类 二、竞赛目的 通过竞赛,检验参赛选手对网络、服务器系统等网络空间中各个信息系统的安全防护能力,以及分析…...
Android 13 - Media框架(6)- NuPlayer
上一节我们通过 NuPlayerDriver 了解了 NuPlayer 的使用方式,这一节我们一起来学习 NuPlayer 的部分实现细节。 ps:之前用 NuPlayer 播放本地视频很多都无法播放,所以觉得它不太行,这两天重新阅读发现它的功能其实很全面ÿ…...
机器学习|DBSCAN 算法的数学原理及代码解析
机器学习|DBSCAN 算法的数学原理及代码解析 引言 聚类是机器学习领域中一项重要的任务,它可以将数据集中相似的样本归为一类。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种是一种经典的密度聚类…...
用NUXT.JS,轻松搞定SEO!
nuxt.js 是什么? 如果你正在准备开发一个SEO友好的新项目,而且准备用 vue 开发,那么恭喜你,用 nuxt 是一个成本和效率都比较优秀的方案。 官方文档 知识中心案例 简单介绍下背景,这是一个专门为氚云低代码平台引流…...
什么是电商RPA?电商RPA能解决什么问题?电商RPA实施难点在哪里?
RPA机器人可以应用于各个行业和领域,例如金融、保险、制造、物流、电商等。它可以减少人工错误和重复工作,提高效率和生产力。RPA还可以在处理大量数据时加快处理速度,提供更准确和可靠的结果。此外,RPA还可以为员工提供更有价值的…...
【BUG】Docker启动MySQL报错
个人主页:金鳞踏雨 个人简介:大家好,我是金鳞,一个初出茅庐的Java小白 目前状况:22届普通本科毕业生,几经波折了,现在任职于一家国内大型知名日化公司,从事Java开发工作 我的博客&am…...
Spring Boot通过企业邮箱发件被Gmail退回的解决方法
这两天给我们开发的Chrome插件:Youtube中文配音 增加了账户注册和登录功能,其中有一步是邮箱验证,所以这边会在Spring Boot后台给用户的邮箱发个验证信息。如何发邮件在之前的文章教程里就有,这里就不说了,着重说说这两…...
Windows使用MobaXterm远程访问ubuntu20.04桌面
参考ubuntu 2020.4 安装vnc 一、脚本文件 remote_setup.sh脚本文件内容: #! /bin/bash #参考链接:https://blog.csdn.net/hailangdeyingzi/article/details/124507304 sudo apt update sudo apt install x11vnc -y sudo x11vnc -storepasswd telpo.12…...
C++注释风格
1. 文件头注释 每个文件都应该开始于一个注释块,描述文件的目的、作者、创建日期和版权信息。 /** FileName: MyClass.cpp* Purpose: Provides functionality for XYZ operations.* Author: [Your Name]* Creation Date: YYYY-MM-DD* Last Updated: YYYY-MM-DD* C…...
Linux 编译内核模块出现--Unknown symbol mcount
文章目录 Linux suse: # cat /etc/os-release NAME"SLES" VERSION"12-SP2" VERSION_ID"12.2" PRETTY_NAME"SUSE Linux Enterprise Server 12 SP2" ID"sles" ANSI_COLOR"0;32" CPE_NAME"cpe:/o:s…...
Pywin32 Cookbook by Eric
Writing Prompt 现在你是一名专业的Python工程师,请你根据"Pywin32_Funtion"函数的功能,为其编写一个清晰的文档说明Functions win32gui.GetWindowDC(hwnd) 描述 win32gui.GetWindowDC()函数用于获取指定窗口的设备上下文(Devi…...
indexDB入门到精通
前言 由于开发3D可视化项目经常用到模型,而一个模型通常是几m甚至是几十m的大小对于一般的服务器来讲加载速度真的十分的慢,为了解决这个加载速度的问题,我想到了几个本地存储的。 首先是cookie,cookie肯定是不行的,因为最多以只…...
Ubuntu 20.04配置静态ip
ip配置文件 cd /etc/netplan配置 根据需求增加 # Let NetworkManager manage all devices on this system network:version: 2renderer: NetworkManager # 管理 不是必须ethernets:enp4s0: #网卡名dhcp4: no #关闭ipv4动态分配ip地址dhcp6: no #关闭ipv6动态分配…...
Tushare入门小册
Tushare入门小册 一、Tushare平台介绍 Pro版数据更稳定质量更好了,我们提供的不再是直接从互联网抓取,而是通过社区的采集和整理存入数据库经过质量控制后再提供给用户。但Pro依然是个开放的,免费的平台,不带任何商业性质和目的…...
<c++开发>通信工具 -之-SOME/IP移植部署 第一篇文章
<c开发>通信工具 -之-SOME/IP移植ubuntu部署 第一篇文章 一 前言 SOME/IP (Scalable service-Oriented MiddlewarE over IP) 是一种通信协议,主要用于嵌入式系统和车载网络中的服务导向通信。SOME/IP是AUTOSAR(AUTomotive Open …...
权威的软件测试服务供应商分享,怎么获得软件安全检测报告?
我们深知在如今的数字化时代,软件安全对于企业和个人来说具有极其重要的意义。然而,许多用户对于软件安全测试报告的概念还不够清晰,也不知道如何获得这样的报告。在本文中,小编将为您简析什么是安全测试报告以及如何获取这样的报…...
管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——假设——第二节——搭桥假设
文章目录 第二节 假设-分类1-搭桥假设-当题干推理存在明显断点,常见形式比如:“因为A→B,C→D,所以A→D”,则正确选项为“B→C”真题(2014-39)-假设-分类1-题干推理存在明显断点-搭桥假设-建模搭桥-“因为A→B,所以A→C”,搭桥假设为“B→C”真题(2019-44)-假设-分…...
百度云BOS云存储的图片如何在访问时,同时进行格式转换、缩放等处理
前言 之前做了一个图片格式转换和压缩的服务,结果太占内存。后来查到在访问图片链接时,支持进行图片压缩和格式转换,本来想着先格式转换、压缩图片再上传到BOS,现在变成了上传后,访问时进行压缩和格式转换。想了想&am…...
go生成文件md5、sha1摘要简单示例
备注 go官方文档 https://pkg.go.dev/crypto/md5 已经给出如何使用该package生成文件或者字节数组的摘要值, 参照即可。 摘要值不是对文内容的加密,它主要用来进行checksum,就是验证两个文件内容是否一致,是否被篡改或者变化了。…...
Docker容器:docker数据管理、镜像的创建及dockerfile案例
文章目录 一、docker数据管理1.为何需要docker数据管理2.数据管理类型3.数据卷4.数据卷容器5.容器的互联 二.docker镜像的三种创建方法1.基于现有镜像创建1.1 启动镜像1.2 生成新镜像 2.基于本地模板创建2.1 OPENVZ 下载模板2.2 导入容器生成镜像 3.基于dockerfile创建3.1 dock…...
Ajax fetch Axios 的区别
AJAX:一种创建交互式网页应用的网页执行交互技术 通过在后台与服务器进行少量数据交换,Ajax可以使网页实现异步更新。意味着:在不重新加载整个网页 的情况下,对网页某部分进行更新。 缺点: 针对MVC编程,…...
数据库结构差异对比工具
简介 前几年写了一个数据库对比工具,但是由于实现方式的原因,数据库支持有限,所以重新设计了一下,便于支持多种数据库,并且更新了UI。 新版地址:https://gitee.com/xgpxg/db-diff 旧版地址:h…...
Shell编程学习之breakcontinuereturn的应用
Shell编程中的break关键字:break关键字:退出最近的循环,后续循环不再执行;break关键字用法: break #结束本层循环 break 数字n #结束n层循环测试代码1: #!/bin/bashfor((i1;i<6;i)) dofor((…...
有趣的数学 数学建模入门二 一些理论基础
一、什么是数学建模? 现实世界中混乱的问题可以用数学来解决,从而产生一系列可能的解决方案来帮助指导决策。大多数人对数学建模的概念感到不舒服,因为它是如此开放。如此多的未知信息似乎令人望而却步。哪些因素最相关?但正是现实世界问题的…...
Spring复习:(55)ApplicationContext中BeanFactoryPostProcessor是怎么添加到容器的?
容器创建时会调用AbstractApplicationContext的refresh方法,其中会调用invokeBeanFactoryPostProcessor方法,如下图 invokeBeanFactoryPostProcessors代码如下: 其中调用的PostProcessorRegistrationDelegate的invokeBeanFactoryPostProcess…...
给wordpress添加关键词与描述
Wordpress网站的关键字及网页描述关系网站对搜索引擎的友好程度,如果自己手动加显然太折腾了,那如何让WordPress博客自动为每篇文章自动关键字及网页描述。每篇文章的内容不同,我们该如何让wordpress自动添加文章描述和关键词呢?下…...
Verilog 入门
Verilog 入门 本内容来自 牛客网Verilog入门特别版 1、一个没有输入和一个输出常数1的输出的电路,输出信号为one module top_module(one);output wire one;assign one 1b1; endmodule2、创建一个具有一个输入和一个输出的模块,其行为类似于电路上的连…...
shell 简单且常用的几种
目录 一、配置环境的shell脚本 二、系统资源脚本 一、要求 二、脚本内容 三、脚本解析 四、赋权并验证 三、查看当前内存的总大小、实际使用大小、剩余大小、显示使用率百分比的脚本 一、第一种方法 二、验证 三、第二种方法 四、验证 四、查看网卡实时流量脚本 一…...
网站建设找睿智骄阳/技成培训网
// 1 第一种 int pageCount rowCount/pageSize; if(rowCount%pageSize > 0){pageCount; }// 2 第二种 -- 推荐 int pageCount (rowCount pageSize - 1)/pageSize; 转载于:https://www.cnblogs.com/520future/p/7908331.html...
在深圳学网站设计/chrome浏览器下载安卓手机
工作的原因,本人经常在高速上开车,发现此文很好,特粘贴给经常开车的朋友们!来自一个高速交警的忠告,非常重要强烈推荐随着道路上的私家车越来越多,作为一名高速交警,在日常的事故处理岗位上&…...
51自学网网站开发/百度客户管理系统登录
欢迎访问网易云社区,了解更多网易技术产品运营经验。2018年9月,网易云易盾宣布,与智能和自动化网络安全解决方案提供商A10 Networks结成战略合作伙伴关系。双方将在抗DDoS攻击领域展开深入合作,共同推出深度集成的联合解决方案&am…...
网站模板 简洁/制作网站的全过程
SIP有多种定义和解释,其中一说是多芯片堆叠的3D封装内系统集成,在芯片的正方向堆叠2片以上互连的裸芯片的封装。SIP是强调封装内包含了某种系统的功能封装,3D封装仅强调在芯片方向上的多芯片堆叠,如今3D封装已从芯片堆叠发展到封装堆叠,扩大了3D封装的内涵。 …...
手机网站开发者模式/什么是整合营销概念
阿里篇(仅有问题,没有答案需要大家共同学习探讨) 如何实现一个高效的单向链表逆序输出?已知 sqrt (2)约等于 1.414,要求不用数学库,求 sqrt (2)精确到小数点后 10 位。给定一个二叉搜索树(BST),…...
域名备案接入商查询/太原seo推广外包
最近发布了面向金融机构的OpenGamma平台0.8.0版 ,具有新的Web GUI和用于深入执行计划和计算的功能。 在这次采访中,JAXenter与OpenGamma首席执行官兼首席技术官Kirk Wylie进行了交谈,以了解0.8.0版本中的新增功能。 JAXenter:您可…...