向量检索:基于ResNet预训练模型构建以图搜图系统
1 项目背景介绍
以图搜图是一种向量检索技术,通过上传一张图像来搜索并找到与之相关的其他图像或相关信息。以图搜图技术提供了一种更直观、更高效的信息检索方式。这种技术应用场景和价值非常广泛,经常会用在商品检索及购物、动植物识别、食品识别、知识检索等领域。以图搜图涉及到的技术点如下:
- 如何对图片数据进行向量编码
- 如何对海量的向量数据进行存储
- 如何快速对海量的向量数据进行检索
本项目基于Resnet预训练模型结合Milvus向量数据库,在水果数据集上实现了以图搜图系统,读者可以将数据集扩展到其它领域,构建满足自身业务的以图搜图系统。
2 关键技术介绍
2.1 Resnet网络
ResNet,全称为Residual Network,是深度学习领域中非常重要的卷积神经网络(Convolutional Neural Network,CNN)架构之一。它由Kaiming He等人在2015年提出,并在ImageNet图像分类比赛中取得了显著的成果,在当时获得分类任务,目标检测,图像分割第一名。ResNet的创新之处在于引入了残差连接(residual connections),允许网络在训练过程中更容易地训练深层网络。
在传统的神经网络中,随着网络层数的增加,性能可能会饱和甚至下降。这是因为梯度消失和梯度爆炸等问题会导致训练变得困难。ResNet通过引入残差块(residual block)来解决这个问题。每个残差块包括一个主要的卷积层,其输出与输入之间的差异被称为“残差”,然后将残差添加回来,得到最终的输出。这样的架构允许信息在网络中更容易地传播,即使网络变得非常深。
ResNet的经典网络结构有:ResNet-18、ResNet-34、ResNet-50、ResNet-101、ResNet-152几种,其中,ResNet-18和ResNet-34的基本结构相同,属于相对浅层的网络,后面3种属于更深层的网络,其中RestNet50最为常用。
ResNet的优点包括:
- 训练更深的网络: 引入残差连接允许构建非常深的网络,这些网络在训练时更容易收敛。
- 避免梯度消失和爆炸: 残差连接有助于梯度在网络中更好地传播,减少了梯度消失和爆炸的问题。
- 更好的特征学习: 残差块允许网络学习残差,即学习更容易捕获到的细粒度特征。
ResNet详细介绍:ResNet
2.2 Milvus向量数据库
Milvus 是一款云原生向量数据库,它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。
Milvus 基于FAISS、Annoy、HNSW 等向量搜索库构建,核心是解决稠密向量相似度检索的问题。在向量检索库的基础上,Milvus 支持数据分区分片、数据持久化、增量数据摄取、标量向量混合查询、time travel 等功能,同时大幅优化了向量检索的性能,可满足任何向量检索场景的应用需求。通常,建议用户使用 Kubernetes 部署 Milvus,以获得最佳可用性和弹性。
Milvus 采用共享存储架构,存储计算完全分离,计算节点支持横向扩展。从架构上来看,Milvus 遵循数据流和控制流分离,整体分为了四个层次,分别为接入层(access layer)、协调服务(coordinator service)、执行节点(worker node)和存储层(storage)。各个层次相互独立,独立扩展和容灾。
Milvus 向量数据库能够帮助用户轻松应对海量非结构化数据(图片/视频/语音/文本)检索。单节点 Milvus 可以在秒内完成十亿级的向量搜索,分布式架构亦能满足用户的水平扩展需求。
milvus特点总结如下:
- 高性能:性能高超,可对海量数据集进行向量相似度检索。
- 高可用、高可靠:Milvus 支持在云上扩展,其容灾能力能够保证服务高可用。
- 混合查询:Milvus 支持在向量相似度检索过程中进行标量字段过滤,实现混合查询。
- 开发者友好:支持多语言、多工具的 Milvus 生态系统。
Milvus详细介绍:Milvus
3 系统代码实现
3.1 运行环境构建
conda环境准备详见:annoconda
git clone https://gitcode.net/ai-medical/image_image_search.git
cd image_image_searchpip install -r requirements.txt
3.2 数据集下载
下载地址:
第一个数据包:package01
第二个数据包:package01
在数据集目录下,存放着10个文件夹,文件夹名称为水果类型,每个文件夹包含几百到几千张此类水果的图片,如下图所示:
以apple文件夹为例,内容如下:
下载后进行解压,保存到D:/dataset/fruit目录下,查看显示如下
# ll fruit/
总用量 508
drwxr-xr-x 2 root root 36864 8月 2 16:35 apple
drwxr-xr-x 2 root root 24576 8月 2 16:36 apricot
drwxr-xr-x 2 root root 40960 8月 2 16:36 banana
drwxr-xr-x 2 root root 20480 8月 2 16:36 blueberry
drwxr-xr-x 2 root root 45056 8月 2 16:37 cherry
drwxr-xr-x 2 root root 12288 8月 2 16:37 citrus
drwxr-xr-x 2 root root 49152 8月 2 16:38 grape
drwxr-xr-x 2 root root 16384 8月 2 16:38 lemon
drwxr-xr-x 2 root root 36864 8月 2 16:39 litchi
drwxr-xr-x 2 root root 49152 8月 2 16:39 mango
3.3 预训练模型下载
'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth','resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth','resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth','resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth','resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth','resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth','resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth','wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth','wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
下载resnet50的预训练模型:resnet50,存放到D:/models目录下
3.4 代码实现
3.4.1 创建database
from pymilvus import connections, dbconn = connections.connect(host="192.168.1.156", port=19530)
database = db.create_database("image_vector_db")db.using_database("image_vector_db")
print(db.list_database())
3.4.2 创建collection
from pymilvus import CollectionSchema, FieldSchema, DataType
from pymilvus import Collection, db, connectionsconn = connections.connect(host="192.168.1.156", port=19530)
db.using_database("image_vector_db")m_id = FieldSchema(name="m_id", dtype=DataType.INT64, is_primary=True,)
embeding = FieldSchema(name="embeding", dtype=DataType.FLOAT_VECTOR, dim=2048,)
path = FieldSchema(name="path", dtype=DataType.VARCHAR, max_length=256,)
schema = CollectionSchema(fields=[m_id, embeding, path],description="image to image embeding search",enable_dynamic_field=True
)collection_name = "fruit_vector"
collection = Collection(name=collection_name, schema=schema, using='default', shards_num=2)
3.4.3 创建index
from pymilvus import Collection, utility, connections, dbconn = connections.connect(host="192.168.1.156", port=19530)
db.using_database("image_vector_db")index_params = {"metric_type": "L2","index_type": "IVF_FLAT","params": {"nlist": 1024}
}collection = Collection("fruit_vector")
collection.create_index(field_name="embeding",index_params=index_params
)utility.index_building_progress("fruit_vector")
3.4.4 数据加载到milvus
from restnet_embeding import restnet_embeding
from milvus_operator import restnet_image, MilvusOperator
from PIL import Image, ImageSequence
import osdef update_image_vector(data_path, operator: MilvusOperator):idxs, embedings, paths = [], [], []total_count = 0for dir_name in os.listdir(data_path):sub_dir = os.path.join(data_path, dir_name)for file in os.listdir(sub_dir):image = Image.open(os.path.join(sub_dir, file)).convert('RGB')embeding = restnet_embeding.embeding(image)idxs.append(total_count)embedings.append(embeding[0].detach().numpy().tolist())paths.append(os.path.join(sub_dir, file))total_count += 1if total_count % 50 == 0:data = [idxs, embedings, paths]operator.insert_data(data)print(f'success insert {operator.coll_name} items:{len(idxs)}')idxs, embedings, paths = [], [], []if len(idxs):data = [idxs, embedings, paths]operator.insert_data(data)print(f'success insert {operator.coll_name} items:{len(idxs)}')print(f'finish update {operator.coll_name} items: {total_count}')if __name__ == '__main__':data_dir = 'D:/dataset/fruit'update_image_vector(data_dir, restnet_image)
3.4.5 基于Resnet预训练模型构建编码网络
加载预训练模型,去掉全连接层,是的Resnet编码输出特征维度为2048
from torchvision.models import resnet50
import torch
from torchvision import transforms
from torch import nnclass RestnetEmbeding:pretrained_model = 'D:/models/resnet50-0676ba61.pth'def __init__(self):self.model = resnet50()self.model.load_state_dict(torch.load(self.pretrained_model))# delete fc layerself.model.fc = nn.Sequential()self.transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],std=[0.26862954, 0.26130258, 0.27577711])])def embeding(self, image):trans_image = self.transform(image)trans_image = trans_image.unsqueeze_(0)return self.model(trans_image)restnet_embeding = RestnetEmbeding()
3.4.6 构建检索web
import gradio as gr
import torch
import numpy as np
import argparse
from net_helper import net_helper
from PIL import Image
from restnet_embeding import restnet_embeding
from milvus_operator import restnet_imagedef image_search(image):if image is None:return Noneimage = image.convert("RGB")# restnet编码imput_embeding = restnet_embeding.embeding(image)imput_embeding = imput_embeding[0].detach().cpu().numpy()results = restnet_image.search_data(imput_embeding)pil_images = [Image.open(result['path']) for result in results]return pil_imagesif __name__ == "__main__":parser = argparse.ArgumentParser()parser.add_argument("--share", action="store_true",default=False, help="share gradio app")args = parser.parse_args()device = torch.device("cuda" if torch.cuda.is_available() else "cpu")app = gr.Blocks(theme='default', title="image",css=".gradio-container, .gradio-container button {background-color: #009FCC} ""footer {visibility: hidden}")with app:with gr.Tabs():with gr.TabItem("image search"):with gr.Row():with gr.Column():image = gr.inputs.Image(type="pil", source='upload')btn = gr.Button(label="search")with gr.Column():with gr.Row():output_images = [gr.outputs.Image(type="pil", label=None) for _ in range(16)]btn.click(image_search, inputs=[image], outputs=output_images, show_progress=True)ip_addr = net_helper.get_host_ip()app.queue(concurrency_count=3).launch(show_api=False, share=True, server_name=ip_addr, server_port=9099)
4 总结
本项目基于Resnet预训练模型及milvus向量数据库两个关键技术,构建了以图搜图的图像检索系统;在构建过程中,对Resnet网络模型进行了改造,去掉了全连接层,经过Restnet编码后每个图片输出向量维度为2048,存入milvus向量数据库;为保证图像检索的效率,通过脚本在milvus向量数据库中构建了向量索引。此项目可作为参考,在实际开发类似的以图搜图项目中直接使用。
项目完整代码地址:code
相关文章:
向量检索:基于ResNet预训练模型构建以图搜图系统
1 项目背景介绍 以图搜图是一种向量检索技术,通过上传一张图像来搜索并找到与之相关的其他图像或相关信息。以图搜图技术提供了一种更直观、更高效的信息检索方式。这种技术应用场景和价值非常广泛,经常会用在商品检索及购物、动植物识别、食品识别、知…...
SpringBoot 响应头添加版本号、打包项目后缀添加版本号和时间
文章目录 响应头添加版本号获取版本号添加响应处理器请求结果 打包项目后缀添加版本号和时间实现打包结果 响应头添加版本号 获取版本号 在 pom.xml 中,在 project.version 下定义版本号 在 application.yml 获取 pom.xml 中 project.version 中的信息 添加响应处…...
优化指南:带宽限制的可行策略
大家好!作为一名专业的爬虫程序员,我们经常面临的一个挑战就是带宽限制。尤其是在需要快速采集大量数据时,带宽限制成为了我们提升爬虫速度的一大阻碍。今天,我将和大家分享一些解决带宽限制的可行策略,希望能帮助大家…...
计算机提示mfc120u.dll缺失(找不到)怎么解决
在计算机领域,mfc120u.dll是一个重要的动态链接库文件。它包含了Microsoft Foundation Class (MFC) 库的特定版本,用于支持Windows操作系统中的应用程序开发。修复mfc120u.dll可能涉及到解决与该库相关的问题或错误。这可能包括程序崩溃、运行时错误或其…...
Java基于SpringBoot+Vue实现酒店客房管理系统(2.0 版本)
文章目录 一、前言介绍二、系统结构三、系统详细实现3.1用户信息管理3.2会员信息管理3.3客房信息管理3.4收藏客房管理3.5用户入住管理3.6客房清扫管理 四、部分核心代码 博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云…...
微服务架构2.0--云原生时代
云原生 云原生(Cloud Native)是一种关注于在云环境中构建、部署和管理应用程序的方法和理念。云原生应用能够最大程度地利用云计算基础设施的优势,如弹性、自动化、可伸缩性和高可用性。这个概念涵盖了许多方面,包括架构、开发、…...
C++day2作业(2023.8.22)
1.定义一个学生的结构体,包含学生的姓名,年龄,成绩,性别,学生的成绩,姓名,定义为私有权限;定义一个学生类型的结构体变量,设置公有函数用于给学生的成绩和名字进行赋值&a…...
在 Spring Boot 中使用 OpenAI ChatGPT API
1、开始咯 我们来看看如何在 Spring Boot 中调用 OpenAI ChatGPT API。 我们将创建一个 Spring Boot 应用程序,该应用程序将通过调用 OpenAI ChatGPT API 生成对提示的响应。 2、OpenAI ChatGPT API 在开始具体讲解之前,让我们先探讨一下我们将在本教…...
【leetcode】225.用队列实现栈
分析: 队列遵循先入先出的原则,栈遵循后入先出的原则 也就是说,使用队列实现栈时,入队操作正常,但是出队要模拟出栈的操作,我们需要访问的是队尾的元素;题目允许使用两个队列,我们可…...
机器学习中XGBoost算法调参技巧
本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。 对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你…...
第1章:计算机网络体系结构
文章目录 1.1 计算机网络 概述1.概念2.组成3.功能4.分类5.性能指标1.2 计算机网络 体系结构&参考模型1.分层结构2.协议、接口、服务3.ISO/OSI模型4.TCP/IP模型1.1 计算机网络 概述 1.概念 2.组成 1.组成部分&...
【Java 动态数据统计图】动态数据统计思路Demo(动态,排序,containsKey)三(115)
上代码: import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map;public class day10 {public static void main(String[] args) {List<Map<String,O…...
【游戏评测】河洛群侠传一周目玩后感
总游戏时长接近100小时,刚好一个月。 这两天费了点劲做了些成就,刷了等级,把最终决战做了。 总体感觉还是不错的。游戏是开放世界3D游戏,Unity引擎,瑕疵很多,但胜在剧情扎实,天赋系统、秘籍功法…...
java新特性之Lambda表达式
函数式编程 关注做什么,不关心是怎么实现的。为了实现该思想,java有了一种新的语法格式,Lambda表达式。Lambda本质是匿名内部类对象,是一个函数式接口。函数式接口表示接口内部只有一个抽象方法。使用该语法可以大大简化代码。 …...
【考研数学】线形代数第三章——向量 | 2)向量组相关性与线性表示的性质,向量组的等价、极大线性无关组与秩
文章目录 引言二、向量组的相关性与线性表示2.3 向量组相关性与线性表示的性质 三、向量组等价、向量组的极大线性无关组与秩3.1 基本概念 写在最后 引言 承接前文,我们来学习学习向量组相关性与线性表示的相关性质 二、向量组的相关性与线性表示 2.3 向量组相关性…...
Java中调用Linux脚本
在Java中,可以使用ProcessBuilder类来调用Linux脚本。以下是一个简单的示例,展示了如何在Java中调用Linux脚本: 创建一个Linux脚本文件(例如:myscript.sh),并在其中编写需要执行的命令。确保脚…...
Nexus 如何配置 Python 的私有仓库
Nexus 可作为一个代理来使用。 针对一些网络环境不好的公司,可以通过配置 Nexus 来作为远程的代理。 Group 概念 Nexus 有一个 Group 的概念,我们可以认为一个 Nexus 仓库的 Group 就是很多不同的仓库的集合。 从下面的配置中我们可以看到࿰…...
Maven 配置文件修改及导入第三方jar包
设置java和maven的环境变量 修改maven配置文件 (D:\app\apache-maven-3.5.0\conf\settings.xml,1中环境变量对应的maven包下的conf) 修改131行左右的mirror,设置阿里云的仓库地址 <mirror> <id>alimaven</id&g…...
jmeter CSV 数据文件设置
创建一个CSV数据文件:使用任何文本编辑器创建一个CSV文件,将测试数据按照逗号分隔的格式写入文件中。例如: room_id,arrival_date,depature_date,bussiness_date,order_status,order_child_room_id,guest_name,room_price 20032,2023-8-9 14:…...
【SA8295P 源码分析】20 - GVM Android Kernel NFS Support 配置
【SA8295P 源码分析】20 - GVM Android Kernel NFS Support 配置 系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》 本文链接:《【SA8295P 源码分析】20 - GVM Android Kernel NFS Support 配置》 # make menuconfigFile systems ---> [*] Network File Sy…...
c++都补了c语言哪些坑?
目录 1.命名空间 1.1 定义 1.2 使用 2.缺省参数 2.1 概念 2.2 分类 3.函数重载 4.引用 4.1 概念 4.2 特性 4.3 常引用 4.4 引用和指针的区别 5.内联函数 1.命名空间 在 C/C 中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将…...
【C语言】C语言用数组算平均数,并输出大于平均数的数
题目 让用户输入一系列的正整数,最后输入“-1”表示输入结束,然后程序计算出这些数的平均数,最后输出输入数字的个数和平均数以及大于平均数的数 代码 #include<stdio.h> int main() {int x;double sum 0;int cnt 0;int number[100…...
「UG/NX」Block UI 体收集器BodyCollector
✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#...
金九银十面试题之《JVM》
🐮🐮🐮 辛苦牛,掌握主流技术栈,包括前端后端,已经7年时间,曾在税务机关从事开发工作,目前在国企任职。希望通过自己的不断分享,可以帮助各位想或者已经走在这条路上的朋友…...
wireshark | 过滤筛选总结
wireshark 是一款开源抓包工具。比如与服务器的请求响应、tcp三次握手/四次挥手 场景:在linux环境下使用tcpdump -w 然后把爬的数据写入指定的XXX.pcap 然后在wireshark中导入该文件XXX.pcap 使用下面的过滤方式进行过滤 分析数据就可以了 #直接看 不需要硬背 和s…...
list使用
list的使用于string的使用都类似,首先通过查阅来看list有哪些函数: 可以看到函数还是蛮多的,我们值重点一些常用的和常见的: 1.关于push_back,push_front,和对应迭代器的使用 //关于push_back和push_front void test_list1() {l…...
【图解】多层感知器(MLP)
图片是一个多层感知器(MLP)的示意图,它是一种常见的神经网络模型,用于从输入到输出进行非线性映射。图片中的网络结构如下:...
React(8)
千锋学习视频https://www.bilibili.com/video/BV1dP4y1c7qd?p72&spm_id_frompageDriver&vd_sourcef07a5c4baae42e64ab4bebdd9f3cd1b3 1.React 路由 1.1 什么是路由? 路由是根据不同的 url 地址展示不同的内容或页面。 一个针对React而设计的路由解决方案…...
ssm社区管理与服务系统源码和论文
ssm社区管理与服务的设计与实现031 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 研究背景 当今时代是飞速发展的信息时代。在各行各业中离不开信息处理,这正是计算机被广泛应用于信息管理系统的…...
Git多版本并行开发实践
本文目的: 实现多个项目同时进行的git多版本管理工作流。 名词解释: feature-XXXX:特性分支指CCS中一个项目或者一个迭代,在该分支上开发,完成后,合并,最后,删除该分支,…...
手机网页无法打开是什么原因/北京seo经理
来自:http://blog.163.com/fjshqhy_2003/blog/static/140268782011217514938/android 在开发google map 项目的时候,首先需要一个android.keystore文件,该文件在 如果是win 7 则:C:\Users\Administrator\.android\ 如果是win xp 则…...
广州做网站好的公司/网络营销师资格证
CSS布局实例:上中下三行布局,上下定高,中间栏自适应浏览器高度,且内容垂直居中。本文代码在firefox 2.0 / winie 6/ win ie 7 /opera 8.5 cn/win safari测试通过。对于非ie内核浏览器,通过设定display:table、display:table-row和…...
wordpress主题转换/目前网络推广平台
1. 剑指 Offer 22. 链表中倒数第k个节点 输入一个链表,输出该链表中倒数第k个节点。为了符合大多数人的习惯,本题从1开始计数,即链表的尾节点是倒数第1个节点。例如,一个链表有6个节点,从头节点开始,它们的…...
图片压缩wordpress/有哪些搜索引擎网站
x365 安装 Windows 2003 Enterprise Server 中文版(使用IBM ServeRAID控制器) 适用机型:所有xSeries 365文档内容:测试机型: x Series 365 (8862-3RX)磁盘接口: IBM ServeRAID 4Lx RAID 控制器(BIOS Ver:6.11.07)系统BIOS: Version: 1.00, …...
成全视频观看高清在线观看/北京seo网站推广
一、电脑软硬件基础知识1、CPU型号怎么看?CPU是一台电脑的核心,而目前笔记本市场基本被Intel(英特尔)的CPU垄断。而Intel的CPU型号命名还算比较有规律。以i7-6920HQ为例:四位数的头一个数字是6指的是代际,也就是是英特尔第六代处理…...
淘客网站怎么做淘口令/百度竞价排名又叫
编写安全的代码很困难,当你学习一门编程语言、一个模块或框架时,你会学习其使用方法。在考虑安全性时,你需要考虑如何避免代码被滥用,Python也不例外,即使在标准库中,也存在着许多糟糕的实例。然而…...