当前位置: 首页 > news >正文

OpenCV之特征点匹配

特征点选取

        特征点探测方法有goodFeaturesToTrack(),cornerHarris()和SURF()。一般使用goodFeaturesToTrack()就能获得很好的特征点。goodFeaturesToTrack()定义:

void goodFeaturesToTrack( InputArray image, OutputArray corners,int maxCorners, double qualityLevel, double minDistance,InputArray mask = noArray(), int blockSize = 3,bool useHarrisDetector = false, double k = 0.04 );

image:源图像;

corners:检测到的特征点位置;

maxcorner:为返回的特征点个数设置上限。
qualityLevel:反映出一个角形特征在它之前的强度,设置较低的值会返回更多的点;
minDistance:特征点之间的最小距离;

mask:如果mask(i,j)=0,那么不考虑像素p(i,j);
blockSize:一个用于计算的像素周围的大小
useHarrisDetector:是否使用原来的哈里斯角探测器或一个最小特征值准则。
k:哈里斯角探测器的一个自由参数。

特征点跟踪

特征点跟踪使用光流算法:利用OpenCV光流算法实现视频特征点跟踪_视图猿人的博客-CSDN博客

为了进一步提高跟踪的准确度,采用正向和反向两次光流跟踪:

对于特征点P(i,j),其正向光流算法计算出的位置为D(x,y);

对D(x,y)点再次使用光流算法,得到位置Q(m,n);

如果P==Q,也就是两个位置相同,那么就留下特征点P

相关文章:

OpenCV之特征点匹配

特征点选取 特征点探测方法有goodFeaturesToTrack(),cornerHarris()和SURF()。一般使用goodFeaturesToTrack()就能获得很好的特征点。goodFeaturesToTrack()定义: void goodFeaturesToTrack( InputArray image, OutputArray corners,int maxCorners, double qualit…...

浅谈开关柜绝缘状态检测与故障诊断

贾丽丽 安科瑞电气股份有限公司 上海嘉定 201801 摘要:电力开关柜作为电力系统的关键设备广泛应用于输电配电网络,其运行可靠性直接影响着电力系统供电质量及安全性能。开关柜绝缘状态检测与故障诊断是及时维修、更换和预防绝缘故障的重要技术手段。在阐述开关柜绝…...

Mybatis 动态 SQL

动态 SQL 1. if 标签2. trim 标签3. where 标签4. set 标签5. foreach 标签 1. if 标签 if 标签有很多应用场景, 例如: 在用户进行注册是有些是必填项有些是选填项, 这就会导致前端传入的参数不固定如果还是将参数写死就很难处理, 这时就可以使用 if 标签进行判断 <insert …...

Android studio之 build.gradle配置

在使用Android studio创建项目会出现两个build.gradle&#xff1a; 一. Project项目级别的build.gradle &#xff08;1&#xff09;、buildscript{}闭包里是gradle脚本执行所需依赖&#xff0c;分别是对应的maven库和插件。 闭包下包含&#xff1a; 1、repositories闭包 2、d…...

【ElasticSearch】一键安装IK分词器无需其他操作

要注意的时下面命令中的es是我容器的名称&#xff0c;要换成你对应的es容器名 docker exec -it es /bin/bash # 进入容器 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis- ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.1…...

在Ubuntu上启动一个简单的用户登录接口服务

一个简单的用户登录接口 我使用 Python 和 Flask 框架来创建这个接口 首先&#xff0c;确保你已经安装了 Python 和 Flask。如果没有安装&#xff0c;可以通过以下命令在 Ubuntu 上安装&#xff1a; sudo apt update sudo apt install python3 python3-pip pip3 install Fla…...

【PHP】函数-作用域可变函数匿名函数闭包常用系统函数

文章目录 函数定义&使用命名规则参数种类默认值引用传递函数返回值return关键字 作用域global关键字静态变量 可变函数匿名函数闭包常用系统函数输出函数时间函数数学函数与函数相关函数 函数 函数&#xff1a;function&#xff0c;是一种语法结构&#xff0c;将实现某一个…...

Python使用pymysql和sqlalchemy访问MySQL的区别

Python使用pymysql和sqlalchemy访问MySQL的区别 1. 两个数据库连接工具的对比 pymysql和sqlalchemy是两个Python中经常用于与MySQL数据库交互的库。都可以连接MySQL数据库&#xff0c;但它们有明显的区别。 &#xff08;1&#xff09;特点 pymysql是一个Python模块&#xf…...

ubuntu服务器的mysql,更改root密码,并允许远程连接

我只是一个搬运工 更改密码远程连接...

微信小程序【构建npm】使用记录

:: 问题 使用原生微信小程序开发时&#xff0c;通过官方 typescript 模板构建的小程序无法正确执行 构建npm 成功&#xff0c;从而导致我想通过 npm 安装并使用第三方库出现问题 :: 开发环境&#xff08;可参照&#xff09; 设备&#xff1a;macOS Ventura 13.0 微信开发者工…...

mybatis入门的环境搭建及快速完成CRUD(增删改查)

又是爱代码的一天 一、MyBatis的介绍 ( 1 ) 背景 MyBatis 的背景可以追溯到 2002 年&#xff0c;当时 Clinton Begin 开发了一个名为 iBATIS 的持久化框架。iBATIS 的目标是简化 JDBC 编程&#xff0c;提供一种更直观、易用的方式来处理数据库操作。 在传统的 JDBC 编程中&…...

《HeadFirst设计模式(第二版)》第九章代码——组合模式

上一章链接&#xff1a; 《HeadFirst设计模式(第二版)》第九章代码——迭代器模式_轩下小酌的博客-CSDN博客 前面说到&#xff0c;当一个菜单里面出现了子菜单的时候&#xff0c;前面的迭代器模式得换成组合模式。 组合模式&#xff1a; 允许将对象组合成树形结构来表现部分-整…...

iOS17 widget Content margin

iOS17小组件有4个新的地方可以放置分别是&#xff1a;Mac桌面、iPad锁屏界面、 iPhone Standby模式、watch的smart stack Transition to content margins iOS17中苹果为widget新增了Content margin, 使widget的内容能够距离边缘有一定的间隙&#xff0c;确保内容显示完整。这…...

计网第四章(网络层)(一)

前面学习了数据链路层&#xff0c;我们可以实现一个网络的内部通信&#xff0c;可是要把这些网络互连起来形成更大的互连网&#xff0c;就需要用网络层互联设备路由器。而有了路由器的参与&#xff0c;就有不同网络、跨网络的概念诞生。 这时候我想大家也能理解为什么叫网络层…...

【前端】vue3 接入antdv表单校验

1/&#x1f355;背景 1、表单校验是非常常见的需求&#xff0c;能够有效的拦截大部分的错误数据&#xff0c;提升效率。 2、快速的给使用者提示和反馈&#xff0c;用户体验感非常好。 3、成熟的表单校验框架&#xff0c;开发效率高&#xff0c;bug少。 最近使用的是vue3antdv的…...

CY3-COOH在蛋白质定位的特点1251915-29-3星戈瑞

​欢迎来到星戈瑞荧光stargraydye&#xff01;小编带您盘点&#xff1a; CY3-COOH是一种橙红色荧光标记试剂&#xff0c;可以用于蛋白质定位研究。**以下是CY3-COOH在蛋白质定位的特点和应用&#xff1a; 细胞定位&#xff1a;**将CY3-COOH标记到特定蛋白质上&#xff0c;可以…...

数据采集:selenium 获取某网站CDN 商家排名信息

写在前面 工作中遇到&#xff0c;简单整理理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停息。所有其它的路都是不完整的&#xff0c;是人的逃避方式&#xff0c;是对大…...

5.从头跑一个pipeline

1.安装torch pip install torchvision torch PyTorch的torchvision.models模块中自带的很多预定义模型。torchvision 是PyTorch的一个官方库&#xff0c;专门用于处理计算机视觉任务。在这个库中&#xff0c;可以找到许多常用的卷积神经网络模型&#xff0c;包括ResNet、VGG、…...

leetcode原题: 堆箱子(动态规划实现)

题目&#xff1a; 给你一堆n个箱子&#xff0c;箱子宽 wi、深 di、高 hi。箱子不能翻转&#xff0c;将箱子堆起来时&#xff0c;下面箱子的宽度、高度和深度必须大于上面的箱子。实现一种方法&#xff0c;搭出最高的一堆箱子。箱堆的高度为每个箱子高度的总和。 输入使用数组…...

Java中数组和集合的对比,以及什么情况下使用数组更合适,什么情况下使用集合更合适。集合的基本介绍和集合体系图。

在Java中&#xff0c;数组和集合&#xff08;Java集合框架&#xff09;都用于存储多个元素。它们各自有不同的特点和适用场景。下面我会对数组和集合进行对比&#xff0c;并解释何时使用集合更好&#xff0c;以及何时使用数组更合适。 数组和集合的对比&#xff1a; 数组&…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...

基于 HTTP 的单向流式通信协议SSE详解

SSE&#xff08;Server-Sent Events&#xff09;详解 &#x1f9e0; 什么是 SSE&#xff1f; SSE&#xff08;Server-Sent Events&#xff09; 是 HTML5 标准中定义的一种通信机制&#xff0c;它允许服务器主动将事件推送给客户端&#xff08;浏览器&#xff09;。与传统的 H…...

Linux入门课的思维导图

耗时两周&#xff0c;终于把慕课网上的Linux的基础入门课实操、总结完了&#xff01; 第一次以Blog的形式做学习记录&#xff0c;过程很有意思&#xff0c;但也很耗时。 课程时长5h&#xff0c;涉及到很多专有名词&#xff0c;要去逐个查找&#xff0c;以前接触过的概念因为时…...

ffmpeg(三):处理原始数据命令

FFmpeg 可以直接处理原始音频和视频数据&#xff08;Raw PCM、YUV 等&#xff09;&#xff0c;常见场景包括&#xff1a; 将原始 YUV 图像编码为 H.264 视频将 PCM 音频编码为 AAC 或 MP3对原始音视频数据进行封装&#xff08;如封装为 MP4、TS&#xff09; 处理原始 YUV 视频…...

MeanFlow:何凯明新作,单步去噪图像生成新SOTA

1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架&#xff0c;旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念&#xff0c;这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换&#xff0c;显…...

视觉slam--框架

视觉里程计的框架 传感器 VO--front end VO的缺点 后端--back end 后端对什么数据进行优化 利用什么数据进行优化的 后端是怎么进行优化的 回环检测 建图 建图是指构建地图的过程。 构建的地图是点云地图还是什么信息的地图&#xff1f; 建图并没有一个固定的形式和算法…...