向量数据库 Milvus:实现高效向量搜索的技术解析
引言
随着人工智能、机器学习和深度学习技术的不断发展,越来越多的应用开始使用向量表示数据。向量数据具有高维、稀疏和相似性等特点,传统的关系型数据库和键值存储在处理这类数据时面临许多挑战。为了满足大规模、高并发的向量搜索需求,出现了一种新型数据库——向量数据库。本文将深入探讨 Milvus 向量数据库的技术原理、特性和应用场景,帮助读者了解如何利用向量数据库实现高效的向量搜索。
1. 向量数据库概述
向量数据库是一种专为处理向量数据而设计的数据库。与传统的关系型数据库和键值存储不同,向量数据库主要关注向量之间的相似性,支持高效的近似最近邻搜索(Approximate Nearest Neighbor,简称 ANN)。在许多 AI 和机器学习应用中,如推荐系统、图像检索、语义搜索等,向量数据库成为了实现高性能、实时搜索的关键技术。
Milvus 是一个开源的向量相似性搜索引擎,旨在帮助开发者在大规模数据集上实现高效、灵活的向量搜索。Milvus 采用分布式架构,支持多种索引算法,可以根据不同的应用场景进行灵活配置。本文将从以下几个方面深入剖析 Milvus 的技术特点:
-
数据模型与存储
-
索引技术与算法
-
分布式架构与扩展性
-
GPU 加速
-
应用场景与实践
2. 数据模型与存储
在 Milvus 中,数据以集合(collection)的形式进行组织。每个集合包含多个向量,以及与向量相关的元数据(如 ID、标签等)。集合可以进一步划分为分片(shard),以实现数据的并行处理和存储。
为了高效地存储和检索向量数据,Milvus 采用列式存储(columnar storage)的方式。在列式存储中,同一列的数据(即同一维度的向量元素)被存储在一起,这样可以减少 I/O 开销,提高查询性能。此外,列式存储还有利于数据压缩,降低存储成本。
3. 索引技术与算法
为了加速向量相似性搜索,Milvus 支持多种索引算法,如倒排文件(IVF),分层 Navigable Small World(HNSW)等。这些索引算法采用近似最近邻搜索(ANN)策略,在大规模数据集上实现高效、准确的向量搜索。下面我们分别介绍这些算法的原理和特点:
1.倒排文件(IVF):IVF 是一种基于聚类的索引方法。在构建索引时,首先对数据集进行聚类,得到多个聚类中心。然后,将每个向量分配到最近的聚类中心,形成一个倒排列表。在查询时,只需在与查询向量最近的聚类中心对应的倒排列表中进行搜索,从而减少搜索范围和计算量。IVF 索引具有较好的可扩展性,可以处理大规模数据集。
2.分层 Navigable Small World(HNSW):HNSW 是一种基于图的索引方法。在构建索引时,HNSW 生成一个分层图结构,每层图包含部分向量,上层图是下层图的子集。在查询时,从最高层开始进行搜索,逐层向下,直到找到最近邻。HNSW 索引在保证较高搜索准确性的同时,具有较低的构建和查询复杂度。
用户可以根据不同的应用场景和性能需求,选择合适的索引算法。此外,Milvus 还支持动态调整索引参数,以实现更好的搜索效果。
4. 分布式架构与扩展性
Milvus 采用分布式架构,支持水平扩展。在大规模数据集和高并发场景下,分布式架构可以充分利用多个节点的计算和存储能力,提高查询速度和吞吐量。
数据分片是 Milvus 分布式架构的关键技术。通过将数据集划分为多个分片,Milvus 可以将查询和索引任务分配给不同的节点,实现并行处理。此外,数据分片还可以提高系统的可用性和容错能力,防止单点故障。
5. GPU 加速
Milvus 支持 NVIDIA GPU 加速,可以充分利用 GPU 的并行计算能力来加速向量相似性搜索。对于大规模数据集和高并发场景,GPU 加速可以显著提高查询速度,降低延迟。
在 Milvus 中,用户可以灵活配置 GPU 资源,如指定 GPU 设备、设置 GPU 缓存大小等。此外,Milvus 支持混合 CPU/GPU 计算,可以根据实际需求调整计算资源,实现性能和成本的平衡。
6.查询优化与缓存
为了进一步提高查询性能,Milvus 采用了一系列查询优化技术,如查询计划生成、执行引擎优化等。通过对查询过程进行分析和优化,Milvus 可以在保证搜索准确性的同时,降低查询延迟,提高吞吐量。
此外,Milvus 还支持数据缓存技术,可以将热点数据缓存在内存中,以加速后续查询。用户可以根据实际需求,配置缓存策略和大小,以实现更好的查询性能。
7.应用场景与实践
Milvus 向量数据库在许多 AI 和机器学习应用中发挥着重要作用,以下是一些典型的应用场景: - 推荐系统:向量数据库可以用于存储用户和商品的特征向量,通过计算向量之间的相似性,实现个性化推荐。Milvus 支持高效的向量搜索,可以在短时间内为用户找到感兴趣的内容。
1.图像检索:在图像检索应用中,可以将图像通过深度学习模型提取成特征向量,并存储在 Milvus 数据库中。当用户提供一张查询图像时,可以快速找到相似的图像,实现实时检索。
2. 语义搜索:Milvus 可以用于存储文本数据的向量表示(如 Word2Vec、BERT 等)。通过计算文本向量之间的相似性,可以实现基于语义的搜索,提高搜索质量和用户体验。
3.生物信息学:在生物信息学领域,可以利用向量数据库存储基因序列、蛋白质结构等数据的向量表示。通过向量搜索,可以快速找到相似的生物学实体,从而加速研究进展。
4.人脸识别:人脸识别系统可以将人脸图像提取成特征向量,并存储在 Milvus 数据库中。当有新的人脸图像出现时,可以快速在数据库中找到匹配的人脸,实现实时识别。
相关文章:
向量数据库 Milvus:实现高效向量搜索的技术解析
引言 随着人工智能、机器学习和深度学习技术的不断发展,越来越多的应用开始使用向量表示数据。向量数据具有高维、稀疏和相似性等特点,传统的关系型数据库和键值存储在处理这类数据时面临许多挑战。为了满足大规模、高并发的向量搜索需求,出现…...

恒运资本:信创概念再度活跃,华是科技再创新高,南天信息等涨停
信创概念21日盘中再度活跃,截至发稿,华是科技涨超17%,盘中一度触及涨停再创新高,中亦科技涨超13%亦创出新高,久其软件、南天信息、新炬网络、英飞拓均涨停。 音讯面上,自8月3日以来,财政部官网连…...

Synchronized锁升级
Java Synchronized 重量级锁原理深入剖析上(互斥篇) 为什么映入Monitor 处在重量级锁状态时说明有线程没拿到锁需要阻塞等待锁,当拥有锁的线程释放锁后唤醒它继续竞争锁。此处就引入了一个问题:其它线程如何找到被阻塞的线程?我们很容易想到…...
记一个宏定义写法
记一个宏定义写法 最近在看libevent源码,看到一个有趣的宏写法。特此记录。方便日后巩固学习。 源码写法: #define HT_FIND(name, head, elm) name##_HT_FIND((head), (elm))首先来简单分析一下: 定睛一看是一个宏,##是连接符…...

【数据结构】C语言实现栈(详细解读)
前言: 💥🎈个人主页:Dream_Chaser~ 🎈💥 ✨✨专栏:http://t.csdn.cn/oXkBa ⛳⛳本篇内容:c语言数据结构--C语言实现栈 目录 什么是栈 栈的概念及结构 实现栈的方式 链表的优缺点: 顺序表的优缺点: 栈…...

3、Spring_容器执行
容器执行点 1.整合 druid 连接池 添加依赖 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.8</version> </dependency>1.硬编码方式整合 新建德鲁伊配置 <?xml version"1.…...

五、pikachu之RCE
文章目录 1、RCE概述2、exec "ping"3、exec"evel"4、连接符 1、RCE概述 RCE(emote command/code execute):可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统。 远程系统命令执行 …...
最大不相交区间数量
给定 N 个闭区间 [ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。 输出可选取区间的最大数量。 输入格式 第一行包含整数 N,表示区间数。 接下来 N 行,每行包含两个整数 ai,…...

Oracle给表空间添加容量
假如给SYSTEM表空间添加 查看文件位置和容量:Select * FROM DBA_DATA_FILES; FILE_NAME就是要修改的文件 查看每一个表空间的容量,单位MB: SELECT t.tablespace_name, round(SUM(bytes / (1024 * 1024)), 0) ts_size FROM dba_tablespaces…...

2023年大数据与区块链国际会议 | EI、Scoups检索
会议简介 Brief Introduction 2023年大数据与区块链国际会议(ICBDB 2023) 会议时间:2023年11月17 -19日 召开地点:中国西安 大会官网:www.icobdb.org 2023年大数据与区块链国际会议(ICBDB 2023)…...

【洛谷算法题】P1000-超级玛丽游戏【入门1顺序结构】
👨💻博客主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P1000-超级玛丽游戏【入门1顺序结构】🌏题目描述🌏输入格…...
ubuntu or kylinos软件安装错误的终极解决方案
一、前言 所谓的软件安装,不管是那个系统,都是通过一定的方法把文件从源复制到目的,然后做一些配置工作,使其能正常的运行,卸载。 对于Linux来说,其目录的高度组织化,以及各软件依赖关系的复杂性,使得软件包数据库显得非常重要。 简单来说,软件包数据库最主要记录两…...

30分钟Python自动化从入门到实战(一)
第一章:自动化测试基础 第一节 软件测试分类 关于软件测试领域名词颇多,发现有许多测试新手混淆概念,从不同的角度可以将软件测试有不同的分类的方法;所以,这里汇总常见软件测试的相关名词,对软件测试领域有个概括的…...

FOC之SVPWM学习笔记
一、参考资料 【自制FOC驱动器】深入浅出讲解FOC算法与SVPWM技术 - 知乎FOC入门教程_zheng是在下的博客-CSDN博客DengFOC官方文档技术干货 |【自制】FOC驱动板 二、FOC控制算法流程框图 在FOC控制中主要用到三个PID环,从内到外依次是:电流环、速度环、位…...

DSO 系列文章(3)——DSO后端正规方程构造与Schur消元
文章目录 DSO代码注释:https://github.com/Cc19245/DSO-CC_Comments...
php 使用ES
Download Elasticsearch | Elastic <?phprequire vendor/autoload.php;use Elasticsearch\ClientBuilder;$client ClientBuilder::create()->build();# 索引一个文档 # Version 7.11 $params [index > my_index,id > my_id,body > [testField > abc] ];$…...
距离我成为炎帝的一次(比较近的一次)
sj登录—专业IT笔试面试备考平台_牛客网 这是dfs的一道基础题,可惜我还是没有学会 但是有时候错误也是一种成长方式 我的代码E题带路 #include<bits/stdc.h> //#define int long long using namespace std;const long long MAX1e310; //lon…...

Protobuf在IDEA中的插件安装教程
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
中间件(上)
1、何为中间件: 中间件(Middleware)是指位于操作系统和应用程序之间的一层软件层,用于提供各种服务和功能,以帮助不同的应用程序、系统或组件进行通信、交互和协作。中间件可以看作是在不同计算机或系统之间建立连接和…...
Python快速检验数据分布
假设检验的前提是确定数据的分布,本文介绍Python检验数据样本是否服从一定分布。使用方法是柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test),K-S检验方法适用于探索连续型随机变量的分布,对…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...