当前位置: 首页 > news >正文

分布式搜索引擎----elasticsearch

目录

1、初识elasticsearch

1.1、什么是elasticsearch

1.2.ELK技术栈

2、正向索引和倒排索引

2.1、正向索引

2.2、倒排索引

2.3、正向索引和倒排索引的区别

3、elasticsearch中的概念理解

3.1、文档和字段

3.2、索引和映射

3.3、mysql与elasticsearch


1、初识elasticsearch

1.1、什么是elasticsearch

        elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。

        elasticsearch结合kibanaLogstashBeats,也就是elastic stackELK)。被广泛应用在日志数据分析、实时监控等领域。

架构:

        Mysql:擅长事务类型操作,可以确保数据的安全和一致性。

        Elasticsearch:擅长海量数据的搜索、分析、计算。

1.2.ELK技术栈

        elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

总结:

        什么是elasticsearch?

                 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

        什么是elastic stack(ELK)?

                是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

        什么是Lucene?

                是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

2、正向索引和倒排索引

2.1、正向索引

        传统数据库(如MySQL)采用正向索引,例如给下表(tb_goods)中的id创建索引

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

        (1)用户搜索数据,条件是title符合`"%手机%"`(索引失效)

        (2)逐行获取数据,比如id为1的数据

        (3)判断数据中的title是否符合用户搜索条件

        (4)如果符合则放入结果集,不符合则丢弃。回到步骤1

        逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

2.2、倒排索引

倒排索引中有两个非常重要的概念:

        文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息。
        词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

 倒排索引的搜索流程如下(以搜索"华为手机"为例):

        虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。 

2.3、正向索引和倒排索引的区别

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描

倒排索引

  • 优点:根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

3、elasticsearch中的概念理解

3.1、文档和字段

        elasticsearch是面向文档存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中。

        而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

3.2、索引和映射

索引(index :相同类型的文档的集合
映射(mapping :索引中文档的字段约束信息,类似表的结构约束

        因此,我们可以把索引当做是数据库中的。数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

 3.3、mysql与elasticsearch

相关文章:

分布式搜索引擎----elasticsearch

目录 1、初识elasticsearch 1.1、什么是elasticsearch 1.2.ELK技术栈 2、正向索引和倒排索引 2.1、正向索引 2.2、倒排索引 2.3、正向索引和倒排索引的区别 3、elasticsearch中的概念理解 3.1、文档和字段 3.2、索引和映射 3.3、mysql与elasticsearch 1、初识elasti…...

AnnotationConfigApplicationContext类和ClasspathXmlApplicationContext类的区别?

在 Spring Framework 中,AnnotationConfigApplicationContext 和 ClasspathXmlApplicationContext 是两个不同的应用程序上下文实现,用于配置和管理 Spring Bean 容器。它们之间的主要区别在于配置的方式和使用场景。 1. **AnnotationConfigApplication…...

使用VSCode SSH实现公网远程连接本地服务器开发的详细教程

文章目录 前言1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…...

Codeforces Round 894 (Div. 3)

还是打一下卡!!! (A,B,C) 目录 A. Gift Carpet 链接 : 题面 : 题目意思 : 思路 : 代码 : B. Sequence Game 链接 : 题面 : ​编辑 题目意思 : 思路 : 代码 : C. Flower City Fence 原题链接 : 题面 : 题目意思 : 思路 : 代码 : A. Gift Carpet 链…...

ACL2023 Prompt 相关文章速通 Part 1

Accepted Papers link: ACL2023 main conference accepted papers 文章目录 Accepted PapersPrompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain AdaptationQuery Refinement Prompts for Closed-Book Long-Form QAPrompting Language Models for Lin…...

“R语言+遥感“水环境综合评价方法

详情点击链接:"R语言遥感"水环境综合评价方法 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址 &…...

数据结构之哈希

哈希 1. 哈希概念2. 哈希冲突3. 哈希冲突解决3.1 哈希表的闭散列3.2 哈希表的开散列 2. 哈希的应用2.1 位图2.2 布隆过滤器 哈希(Hash)是一种将任意长度的二进制明文映射为较短的二进制串的算法。它是一种重要的存储方式,也是一种常见的检索方…...

可视化绘图技巧100篇基础篇(七)-散点图(一)

目录 前言 适用场景 图例 普通散点图与可视化 曲线图 气泡图...

关于什么是框架

框架(Framework)是一个框子——指其约束性,也是一个架子——指其支撑性。 IT语境中的框架,特指为解决一个开放性问题而设计的具有一定 性的支撑结构。在此结构上约束可以根据具体问题扩展、安插更多的组成部分,从而更迅…...

iOS开发Swift-集合类型

集合基本类型&#xff1a;数组 Array (有序)&#xff0c; 集合 Set (无序不重复)&#xff0c; 字典 Dictionary (无序键值对) 1.数组 Arrays (1)数组的表示 Array<Element> [Element](2)创建空数组 var someInts: [Int] [] someInts.count //数组长度(3)带值数组 var…...

【keepalived双机热备与 lvs(DR)】

目录 一、概述 1.简介 2.原理 3.作用 二、安装 1.配置文件 2.配置项 三、功能模块 1.core 2.vrrp 3.check 四、配置双机热备 1.master 2.backup 五、验证 1.ping验证 2.服务验证 六、双机热备的脑裂现象 七、keepalivedlvs&#xff08;DR&#xff09; 1.作…...

C++笔记之静态成员函数可以在类外部访问私有构造函数吗?

C笔记之静态成员函数可以在类外部访问私有构造函数吗&#xff1f; code review! 静态成员函数可以在类外部访问私有构造函数。在C中&#xff0c;访问控制是在编译时执行的&#xff0c;而不是在运行时执行的。这意味着静态成员函数在编译时是与类本身相关联的&#xff0c;而不…...

最新SQLMap进阶技术

SQLMap进阶&#xff1a;参数讲解 &#xff08;1&#xff09;–level 5&#xff1a;探测等级。 参数“–level 5”指需要执行的测试等级&#xff0c;一共有5个等级&#xff08;1~5级&#xff09;&#xff0c;可不加“level”&#xff0c;默认是1级。可以在xml/payloads.xml中看…...

【BurpSuite常用功能介绍】

BurpSuite的使用 1.运行BurpSuite 2.代理设置 打开软件后&#xff0c;我们第一件事就应该去调试软件和浏览器的代理&#xff0c;让BURP能够正常工作抓包 proxy--options&#xff0c;我端口默认使用8080 然后我们打开一个浏览器&#xff0c;进入代理设置 (注意一点&#xff0…...

Leetcode 108. 将有序数组转换为二叉搜索树

108. 将有序数组转换为二叉搜索树 分析 给定一个有序数组&#xff0c;要求转换为二叉搜索树。 数组是有序的&#xff0c;并且要求二叉树。 这里看到数组是有序的&#xff0c;马上想到二分&#xff0c;但是又不需要完全二分 实现。 再复习二叉搜索树的结构特点&#xff1a; 左…...

小匠物联联合亚马逊云助力企业数智化出海

如何让家电企业出海产品数智化之路走上康庄大道&#xff1f;8月25日,亚马逊云科技[创新成长企业专列]这趟上云快车将开往宁波站&#xff0c;助力宁波的制造、软件等企业扬帆起航&#xff01;现场举办“亚马逊云科技助力企业出海数智沙龙”&#xff0c;小匠物联受邀出席。 会议现…...

(五)k8s实战-配置管理

一、ConfigMap 使用 kubectl create configmap -h 查看示例&#xff0c;构建 configmap 对象 1) 基于文件夹&#xff0c;加载文件夹下所有配置文件&#xff0c;创建 kubectl create configmap <configmapName> --from-file<dirPath>2) 指定配置文件&#xff0c;创…...

GPT---1234

GPT:《Improving Language Understanding by Generative Pre-Training》 下载地址:https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdfhttps://cdn.openai.com/research-covers/language-unsupervised/language_understa…...

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称&#xff1a; 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &…...

python进行数据分析:数据预处理

六大数据类型 见python基本功 import numpy as np import pandas as pd数据预处理 缺失值处理 float_data pd.Series([1.2, -3.5, np.nan, 0]) float_data0 1.2 1 -3.5 2 NaN 3 0.0 dtype: float64查看缺失值 float_data.isna()0 False 1 …...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...