当前位置: 首页 > news >正文

CF 148 D Bag of mice(概率dp求概率)

CF 148 D. Bag of mice(概率dp求概率)

Problem - 148D - Codeforces

大意:袋子里有 w 只白鼠和 b 只黑鼠 ,A和B轮流从袋子里抓,谁先抓到白色谁就赢。A每次随机抓一只,B每次随机抓完一只之后会有另一只随机老鼠跑出来。如果两个人都没有抓到白色则B赢。A先抓,问A赢的概率。

思路:看到数据范围后考虑 概率dp , 设 dp[i][j] 为有 i 个白鼠 j 个黑鼠 A先手获胜的概率

考虑初始化

i == 0 全是黑鼠 , A 必败
dp[i][j] == 0
j == 0 全是白鼠 ,  A 必胜 
dp[i][j] == 1

分情况考虑转移

分四种情况:
1. A 取到白鼠                             dp[i][j] += i / (i + j)
2. A 取到黑鼠 , B取到白鼠                dp[i][j] += 0;
3. A 取到黑鼠 , B取到黑鼠 , 白鼠跑出来  dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * i / (i + j - 2) * dp[i - 1][j - 2]
4. A 取到黑鼠 , B取到黑鼠 , 黑鼠跑出来  dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * (j - 2) / (i + j - 2) * dp[i][j - 3]
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 1e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;double dp[N][N];
int x , y;inline double pro(int x , int y){return (double) x / (double) y;
}signed main(){IOScout << fixed << setprecision(10);cin >> x >> y;for(int i = 1 ; i <= x ; i ++) dp[i][0] = 1;for(int i = 1 ; i <= y ; i ++) dp[0][i] = 0;for(int i = 1 ; i <= x ; i ++){for(int j = 1 ; j <= y ; j ++){dp[i][j] += pro(i , i + j);if(i >= 1 && j >= 2) dp[i][j] += pro(j , i + j) * pro(j - 1 , i + j - 1) * pro(i , i + j - 2) * dp[i - 1][j - 2];if(j >= 3) dp[i][j] += pro(j , i + j) * pro(j - 1 , i + j - 1) * pro(j - 2 , i + j - 2) * dp[i][j - 3];}}cout << dp[x][y];return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

相关文章:

CF 148 D Bag of mice(概率dp求概率)

CF 148 D. Bag of mice(概率dp求概率) Problem - 148D - Codeforces 大意&#xff1a;袋子里有 w 只白鼠和 b 只黑鼠 &#xff0c;A和B轮流从袋子里抓&#xff0c;谁先抓到白色谁就赢。A每次随机抓一只&#xff0c;B每次随机抓完一只之后会有另一只随机老鼠跑出来。如果两个人…...

引入本地 jar 包教程

将本地 jar 包&#xff0c;放到 resource 目录下&#xff0c;在 pom.xml 文件中加入如下依赖&#xff1a; <dependency><groupId>com.hk</groupId><artifactId>examples</artifactId><version>1.0</version><scope>system<…...

优维产品最佳实践第5期:什么是持续集成?

谈到到DevOps&#xff0c;持续交付流水线是绕不开的一个话题&#xff0c;相对于其他实践&#xff0c;通过流水线来实现快速高质量的交付价值是相对能快速见效的&#xff0c;特别对于开发测试人员&#xff0c;能够获得实实在在的收益。 本期EasyOps产品使用最佳实践&#xff0c…...

空时自适应处理用于机载雷达——元素空间空时自适应处理(Matla代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

聚观早报 | 青瓷游戏上半年营收3.34亿元;如祺出行冲击IPO

【聚观365】8月26日消息 青瓷游戏上半年营收3.34亿元 如祺出行冲击IPO 索尼互动娱乐将收购Audeze 昆仑万维上半年净利润3.6亿元 T-Mobile计划在未来五周内裁员5000人 青瓷游戏上半年营收3.34亿元 青瓷游戏发布截至2023年6月30日止的中期业绩&#xff0c;财报显示&#xf…...

硅谷的魔法:如何塑造了全球技术的未来

硅谷的创新文化简介 硅谷&#xff0c;位于美国加利福尼亚州的圣克拉拉谷&#xff0c;已经从一个半导体产业的中心发展成为全球技术创新的代名词。这里集结了全球最顶尖的技术公司、创业者和投资者&#xff0c;共同创造了一个技术创新的奇迹。 起源与发展 硅谷的起源与斯坦福大…...

(三)行为模式:4、迭代器模式(Iterator Pattern)(C++示例)

目录 1、迭代器模式&#xff08;Iterator Pattern&#xff09;含义 2、迭代器模式的UML图学习 3、迭代器模式的应用场景 4、迭代器模式的优缺点 &#xff08;1&#xff09;优点 &#xff08;2&#xff09;缺点 5、C实现迭代器模式的实例 1、迭代器模式&#xff08;Itera…...

React Antd form.getFieldsValue() 和 form.getFieldsValue(true) 有区别吗?

背景 突然发现 antd 的 getFieldsValue()是可以传一个 true 参数的&#xff0c;如题,React Antd form.getFieldsValue() 和 form.getFieldsValue(true) 有区别吗&#xff1f; 验证 确实不一样 结论 getFieldsValue 提供了多种重载方法&#xff1a; getFieldsValue(name…...

浅谈Java中的观察者模式

观察者模式是软件开发中常用的一种设计模式&#xff0c;它通过定义一对多的依赖关系&#xff0c;使得一个对象&#xff08;主题&#xff09;的状态变化可以通知多个其他对象&#xff08;观察者&#xff09;。 这种模式的优点是解耦和增加扩展性&#xff0c;用于实现对象之间的…...

C++:命名空间,缺省参数,函数重载,引用,内联函数

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》 文章目录 前言一、命名空间命名空间的定义命名空间的使用 二、缺省参数缺省参数概念缺省参数分类 三、函数重载函数重载的概念 四、引用引用的概念引用特性引用的使用场景引用与指针的区别 …...

2.Vue报错Cannot read properties of undefined (reading ‘then‘)

1.出现报错 Cannot read properties of undefined (reading ‘then’)&#xff0c; 代码为 uploadFile(e.target.files[0]).then((res) > {alert(JSON.stringify(res));});2.原因 是因为uploadFile方法没有返回值&#xff0c;于是我又检查了一遍代码&#xff0c;发现我的r…...

【LeetCode 】数组简介

集合列表和数组 本文中介绍的概念为适用于所有编程语言的抽象理论&#xff0c;具体实现会由编程语言的不同而稍有差别。 具体介绍数组之前&#xff0c;我们先来了解一下集合、列表和数组的概念之间的差别。 集合 集合一般被定义为&#xff1a;由一个或多个确定的元素所构成的…...

一文解析block io生命历程

作为存储业务的一个重要组成部分&#xff0c;block IO是非易失存储的唯一路径&#xff0c;它的生命历程每个阶段都直接关乎我们手机的性能、功耗、甚至寿命。本文试图通过block IO的产生、调度、下发、返回的4个阶段&#xff0c;阐述一个block IO的生命历程。 一、什么是块设备…...

Python爬虫学习之旅:从入门到精通,要学多久?

导语&#xff1a; 随着信息时代的发展&#xff0c;大量的数据和信息储存在互联网上&#xff0c;这为我们提供了获取和利用这些数据的机会。而Python爬虫作为一种强大的工具&#xff0c;可以帮助我们从网页中提取数据&#xff0c;并进行进一步的分析和挖掘。然而&#xff0c;对…...

HarmonyOS/OpenHarmony(Stage模型)卡片开发应用上下文Context使用场景一

1.获取应用文件路径 基类Context提供了获取应用文件路径的能力&#xff0c;ApplicationContext、AbilityStageContext、UIAbilityContext和ExtensionContext均继承该能力。应用文件路径属于应用沙箱路径。上述各类Context获取的应用文件路径有所不同。 通过ApplicationContext…...

MAE 论文精读 | 在CV领域自监督的Bert思想

1. 背景 之前我们了解了VIT和transformer MAE 是基于VIT的&#xff0c;不过像BERT探索了自监督学习在NLP领域的transformer架构的应用&#xff0c;MAE探索了自监督学习在CV的transformer的应用 论文标题中的Auto就是说标号来自于图片本身&#xff0c;暗示了这种无监督的学习 …...

C++中内存的分配

一个由C/C编译的程序占用的内存分为以下几个部分 1、栈区&#xff08;stack&#xff09;— 由编译器自动分配释放 &#xff0c;存放函数的参数值&#xff0c;局部变量的值等。 2、堆区&#xff08;heap&#xff09; — 一般由程序员分配释放&#xff0c; 若程序…...

Qt中的垂直布局QVBoxLayout和水平布局QHBoxLayout

文章目录 QVBoxLayoutQHBoxLayout QVBoxLayout Qt中的垂直布局&#xff08;Vertical Layout&#xff09;是用来将控件按垂直方向进行排列的布局管理器。下面是一些常用的Qt Vertical Layout的函数及其用法示例&#xff1a; QVBoxLayout类的构造函数&#xff1a; QVBoxLayout…...

【C#学习笔记】委托和事件

文章目录 委托委托的定义委托实例化委托的调用多播委托 为什么使用委托&#xff1f;官方委托泛型方法和泛型委托 事件为什么要有事件&#xff1f;事件和委托的区别&#xff1a; 题外话——委托与观察者模式 委托 在 .NET 中委托提供后期绑定机制。 后期绑定意味着调用方在你所…...

堆排序简介

概念&#xff1a; 堆排序是一种基于二叉堆数据结构的排序算法。它的概念是通过将待排序的元素构建成一个二叉堆&#xff0c;然后通过不断地取出堆顶元素并重新调整堆的结构来实现排序。 算法步骤&#xff1a; 构建最大堆&#xff08;或最小堆&#xff09;&#xff1a;将待排…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...