当前位置: 首页 > news >正文

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

近年来,随着可再生能源的并网以及非线性负载和固态开关器件的数量不断增加,导致了大量严重

的电能质量问题。同时,精密电子设备的广泛使用需要极高质量的电源。为合理有效地改善电能质量,电能质量扰动问题的准确分类也变得非常重要 [1]。目前电能质量扰动问题分类方法的过程主要包括特征提取和模式识别两个步骤 [1]。特征提取常用的信息处理技术有短时傅里叶变换 (STFT)[2]、经验模态分解 ( E M D )[3] 和 S 变换 [4] 等。这些方法拥有很好的扰动识别效果,但也存在一些固有的缺陷。其中短时傅里叶变换的使用缺少可变窗口,不利于分析非平稳信号 ;S 变换是小波变换和短时傅里叶变换的结合,但其难点在于如何确认窗函数的宽度[4] ;经验模态分解存在严重的模态混叠和端点效应问题。离散小波变换 (DWT) 可以优化分解频率子带内的信号并估计扰动幅度,是一种灵活的扰动识别方法 [5]。因此,将 DWT 算法应用于特征提取。

模式识别常采用的方法有人工神经网络 [6]、决策树 [7] 和专家系统 [8] 等。人工神经网络存在容易陷入局部最优、收敛性较差等缺点 ;决策树容易出现过拟合现象和局部最优问题 ;专家系统由于自身不具备学习能力,所有的知识和解决方案都是由领域内的专家提供,因此其容错能力差,易产生组合爆炸的问题。支持向量机 (SVM) 基于小样本统计学习理论和结构风险最小化原理,具有较好的泛化能力 [9]。

D W T 具有非常有效的算法和稀疏表示,尤其在处理非平稳信号方面,具有良好的时频特性,和傅

里叶变换不同,离散小波分析不是根据三角多项式而是通过母小波函数的扩张和平移特性生成 [10]。信号h(t) 的 DWT 表示为 :

📚2 运行结果

运行视频:

基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)_哔哩哔哩_bilibili

 部分代码:

%% 暂态脉冲
%fn goes from 300 to 900

fn=500;
amp= rand(1,1)*range([4 7])+min([4 7]);
t1=0.151; 
t2=0.150; 
ty= (t1+t2)/2;
t=[0 :0.0001:0.4];
k=rand(1,1)*range([1 1.5])+min([1 1.5]);
y= k*(sin((2*pi*50)*t)+ amp*(heaviside(t-t2)-heaviside(t-t1)).*exp(-t/ty).*sin(2*pi*fn*t));

subplot(2,1,2);
plot(t,y)
title('Impulsive Transient');
xlabel ('Time (sec)');
ylabel ('Amplitude');
hold on
Impulsive_transient=[t,y]';

%% 振荡瞬态
%fn goes from 300 to 900

fn=rand(1,1)*range([300 500])+min([300 500]);
t=[0 :0.0001:0.4];
amp= 1;
t1=0.255;
t2=0.248; 
ty= (t1+t2)/2;
t=[0 :0.0001:0.4];
k=rand(1,1)*range([1 1.5])+min([1 1.5]);
y= k*(sin((2*pi*50)*t)+ amp*(heaviside(t-t2)-heaviside(t-t1)).*exp(-t/ty).*sin((2*pi*fn)*t));

figure(4)
subplot(2,1,1);
plot(t,y)
title('Oscillatory Transient');
xlabel ('Time (sec)');
ylabel ('Amplitude');
hold on
Oscillatory_transient=[t,y]';

%% SAG+HARMONIC 
t=[0 :0.0001:0.4];
alpha=rand(1,1)*range([0.1 0.8])+min([0.1 0.8]);
alpha3=rand(1,1)*range([0.05 0.15])+min([0.05 0.15]);
alpha5=rand(1,1)*range([0.05 0.15])+min([0.05 0.15]);
alpha7=rand(1,1)*range([0.05 0.15])+min([0.05 0.15]);
alpha1= sqrt(1- alpha3^2-alpha5^2-alpha7^2);
k=rand(1,1)*range([1 1.5])+min([1 1.5]);
y=k*((1-alpha*((heaviside(t-0.05)-heaviside(t-0.15)))).*(alpha1* sin(314*t)+ alpha3*sin(3*314*t)+ alpha5*sin(5*314*t)+ alpha7*sin(7*314*t)));

subplot(2,1,2);
plot(t,y);
title('Sag+Harmonics');
xlabel ('Time (sec)');
ylabel ('Amplitude');
hold on
Sag_harmonic=[t,y]';

%% SWELL+HARMONIC
t=[0 :0.0001:0.4];
alpha=rand(1,1)*range([0.1 0.8])+min([0.1 0.8]);
alpha3=rand(1,1)*range([0.05 0.15])+min([0.05 0.15]);
alpha5=rand(1,1)*range([0.05 0.15])+min([0.05 0.15]);
alpha7=rand(1,1)*range([0.05 0.15])+min([0.05 0.15]);
alpha1= sqrt(1-alpha3^2-alpha5^2-alpha7^2);
k=rand(1,1)*range([1 1.5])+min([1 1.5]);
y=k*((1+alpha*((heaviside(t-0.05)-heaviside(t-0.15)))).*(alpha1* sin(314*t)+ alpha3*sin(3*314*t)+ alpha5*sin(5*314*t)+ alpha7*sin(7*314*t)));

figure(5)
subplot(2,1,1);
plot(t,y)
title('Swell+Harmonics');
xlabel ('Time (sec)');
ylabel ('Amplitude');
hold on
Swell_harmonic=[t,y]';

%% FLICKER

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]李家俊,吴建军,陈武,钟建伟.基于DWT-PCA-LIBSVM的电能质量扰动分类方法[J].电工电气,2023(03):20-24.

[2]马嘉秀,徐玮浓,何复兴,邵诗韵,赵家乐,李宁.基于WT和SVM的电能质量分类识别方法[J].智慧电力,2019,47(03):16-22+37.

🌈4 Matlab代码实现

相关文章:

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

使用 OpenAI GPT 模型的最佳实践

推荐:使用NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 为了帮助用户获得最佳输出,OpenAI 提供了使用 GPT 模型的最佳实践。这来自体验,因为许多用户不断尝试使用此模型并找到了最有效的方法。 在本文中,我将总结使用 Ope…...

解除用户账户控制提醒

解决用户账户控制提醒 1. 前言2. 解决用户账户控制提醒2.1 控制面板2.2 注册表2.3 UAC服务 结束语 1. 前言 当我们使用电脑时,有时进行安装应用或者打开应用时,总会弹出一个提示框,要选择点击是否允许程序运行; 系统经常弹出用户…...

行业追踪,2023-08-23

自动复盘 2023-08-23 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…...

算法修炼Day60|● 84.柱状图中最大的矩形

LeetCode:84.柱状图中最大的矩形 84. 柱状图中最大的矩形 - 力扣(LeetCode) 1.思路 双指针思路,以当前数组为中心,借助两个数组存放当前数柱左右两侧小于当前数柱高度的索引,进行h*w的计算。注意首尾节点的左侧索引…...

前端面试题css(一)

题目 盒子垂直水平居中如何实现text-align:center vertical-align: middle水平垂直居中布局positionmargin水平垂直居中布局 grid栅格化布局及其兼容性介绍一下BFC触发 BFC 的条件包括:常见的用途包括: 写过的动画效果overflow有哪些属性visible&#x…...

.NETCORE中关于swagger的分组

有些时候我们的项目接口过多,就希望对应的swagger能够执行分组,网络上的几乎是千篇一律的分组方法,会累死! 这里提供一个更加高效的分组方法,比如你可以说哪些模块分到哪个组,哪些权限分到哪个组&#xff…...

4.1011

目录 四次挥手中收到乱序的FIN包会如何处理? 在 TIME_WAIT 状态的 TCP 连接,收到 SYN 后会发生什么? 四次挥手中收到乱序的FIN包会如何处理? 如果FIN报文比数据包先道道客户端,此时FIN是一个乱序报文,此时…...

uniapp中引入axios的错误?

场景 在unaipp中使用axios npm i axios 下载完成后 然后在页面中使用 axios.get(“http://3000/searchS”) 然后报错 Adapter http’ is not available in the build 原因 在 UniApp 中使用 Axios 发送 HTTP 请求时,如果出现错误 “Adapter http’ is not available…...

Discuz!论坛发帖标题字数限制80字符可以修改吗?修改发帖标题字数的方法

Discuz!论坛发帖标题字数限制80字符修改方法 1.数据库修改2.修改JS验证字符数文件3.修改模板中写死的字符限制数4.修改函数验证文件5.修改语言包文件6.更新缓存 Discuz X3.4论坛网站帖子标题字数限制80字符,当我们想使用长标题的时候就得一删再删,实在是…...

R语言画样本不均衡组的箱线图

# 导入 ggplot2 包 library(ggplot2)# 示例数据框&#xff0c;包含数值数据和分组信息 data <- data.frame(Group c(rep("Group A",10), rep("Group B",15),rep("Group C",20)),Value c(rnorm(10, mean 10, sd 2),rnorm(15, mean 15, sd…...

ArcGIS学习总结(19)——要素转点与空间连接(属性表字段映射)

1.在新创建的面矢量数据的属性表中没有对应的字段信息&#xff0c;为了能够和有属性信息的数据进行匹配&#xff0c;使其具有对应字段的信息。 2.需要匹配的矢量文件属性表信息。 3.对新创建的矢量文件执行要素转点&#xff1a;数据管理工具→要素→要素转点。 4.选择分析工…...

【每日一题Day306】LC228汇总区间 | 双指针

汇总区间【LC228】 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说&#xff0c;nums 的每个元素都恰好被某个区间范围所覆盖&#xff0c;并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区间范…...

vue中实现echarts三维散点图

需要安装 echarts 同时引入 echarts-gl 我安装的版本&#xff1a; "echarts": "^5.3.2", "echarts-gl": "^2.0.9", import Vue from "vue"; import * as echarts from "echarts"; Vue.prototype.$echarts echa…...

多头自注意力机制的代码实现

文章目录 1、自注意力机制2、多头注意力机制 transformer的整体结构&#xff1a; 1、自注意力机制 自注意力机制如下&#xff1a; 计算过程&#xff1a; 代码如下&#xff1a; class ScaledDotProductAttention(nn.Module):def __init__(self, embed_dim, key_size, value_…...

抽象工厂模式

目录 了解抽象工厂模式前的前置知识 什么是抽象工厂模式&#xff1f; 为什么要提出抽象工厂模式&#xff1f; 抽象工厂模式中的四大角色&#xff1f; 抽象工厂模式的优缺点&#xff1f; 抽象工厂模式的适用场景&#xff1f; 了解抽象工厂模式前的前置知识 在讲抽象工厂模式…...

登录校验-Filter-详解

目录 执行流程 拦截路径 过滤器链 小结 执行流程 过滤器Filter拦截到请求之后&#xff0c;首先执行方放行之前的逻辑&#xff0c;然后执行放行操作&#xff08;doFilter&#xff09;&#xff0c;然后会访问对应的Web资源&#xff08;对应的Controller类&#xff09;&#…...

堆栈方法区笔记记录

成员变量分两种: 1)实例变量:没有static修饰&#xff0c;属于对象&#xff0c;存储在堆中&#xff0c;有几个对象就有几份&#xff0c;通过对象点来访问 2)静态变量:由static修饰&#xff0c;属于类&#xff0c;存储在方法区中&#xff0c;只有一份&#xff0c;通过类名点来访…...

新版微信小程序获取用户手机号

小程序手机号验证组件有两种 手机号快速验证组件 //原生写法 <button open-type"getPhoneNumber" bindgetphonenumber"getPhoneNumber"></button>Page({getPhoneNumber (e) {console.log(e.detail.code)} })uniapp写法 <button open-type…...

CSS实践 —— 悬浮盒子阴影加上移效果

悬浮盒子阴影加上移效果 代码 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>Title</title><style>body{background-color: #f5f5f5;}.shadow {width: 100px;height: 100px;margin:…...

安全测试基础知识

软件安全测试是评估和测试系统以发现系统及其数据的安全风险和漏洞的过程。没有通用术语&#xff0c;但出于我们的目的&#xff0c;我们将评估定义为分析和发现漏洞&#xff0c;而不尝试实际利用这些漏洞。我们将测试定义为发现和尝试利用漏洞。 安全测试通常根据要测试的漏洞…...

列表首屏毫秒级加载与自动滚动定位方案

引用自 摸鱼wiki 场景 <template><div ref"commentsRef"><divv-for"comment in displayComments":key"comment.id":data-cell-id"comment.id"class"card">{{ comment.data }}</div></div> &…...

小区物业业主管理信息系统设计的设计与实现(论文+源码)_kaic

摘 要 随着互联网的发展&#xff0c;网络技术的发展变得极其重要&#xff0c;所以依靠计算机处理业务成为了一种社会普遍的现状。管理方式也自然而然的向着现代化技术方向而改变&#xff0c;所以纯人工管理方式在越来越完善的现代化管理技术的比较之下也就显得过于繁琐&#x…...

Fortran 微分方程求解 --ODEPACK

最近涉及到使用Fortran对微分方程求解&#xff0c;我们知道MATLAB已有内置的函数&#xff0c;比如ode家族&#xff0c;ode15s&#xff0c;对应着不同的求解办法。通过查看odepack的官方文档&#xff0c;我尝试使用了dlsode求解刚性和非刚性常微分方程组。 首先是github网址&am…...

8路光栅尺磁栅尺编码器或16路高速DI脉冲信号转Modbus TCP网络模块 YL99-RJ45

特点&#xff1a; ● 光栅尺磁栅尺解码转换成标准Modbus TCP协议 ● 高速光栅尺磁栅尺4倍频计数&#xff0c;频率可达5MHz ● 模块可以输出5V的电源给光栅尺或传感器供电 ● 支持8个光栅尺同时计数&#xff0c;可识别正反转 ● 可以设置作为16路独立DI高速计数器 ● 可网…...

【Python】函数

None类型 思考&#xff1a;若函数没有使用return语句返回数据&#xff0c;那么函数有返回值吗&#xff1f; 答&#xff1a;实际上是有的&#xff0c;Python中有一个特殊的字面量None&#xff0c;其类型是<class ‘NoneType’>&#xff0c;无返回值的函数&#xff0c;实…...

centos安装MySQL 解压版完整教程(按步骤傻瓜式安装

一、卸载系统自带的 Mariadb 查看&#xff1a; rpm -qa|grep mariadb 卸载&#xff1a; rpm -e --nodeps mariadb-libs-5.5.68-1.el7.x86_64 二、卸载 etc 目录下的 my.cnf 文件 rm -rf /etc/my.cnf 三、检查MySQL是否存在 有则先删除 #卸载mysql服务以及删除所有mysql目录 #没…...

【后端速成 Vue】第一个 Vue 程序

1、为什么要学习 Vue&#xff1f; 为什么使用 Vue? 回想之前&#xff0c;前后端交互的时候&#xff0c;前端收到后端响应的数据&#xff0c;接着将数据渲染到页面上&#xff0c;之前使用的是 JavaScript 或者 基于 JavaScript 的 Jquery&#xff0c;但是这两个用起来还是不太…...

Macbook pro M1 安装Ubuntu教程

先讲下心路历程 由于版主最近刚切换到Mac&#xff0c;所以在安装的时候一上手就选择了virutalbox&#xff0c;结果报错“The installer has detected an unsupported architecture. VirtualBox only runs on the amd64 architecture.” 后来去Reddit论坛上一看&#xff0c;才知…...

前端console.log打印内容与后端请求返回数据不一致

后端传值num0 前端打印num1 ,如图&#xff0c;console.log后台显示的数据与展开后不一致 造成该问题原因是深拷贝与浅拷贝的问题。 var obj JSON.parse(JSON.stringify(res)) 修改后打印 正常...

dedecms 网站安全设置/培训学校招生营销方案

前言,我是作者之一,目前是WTForms的主要维护者在我了解为什么我应该为使用WTForms的人们提到一个非常常见的模式之前,就是创建自己的模块,将所需的所有位组合成一个命名空间.例如在myapp / forms.py中,您可以执行以下操作&#xff1a;from wtforms.fields import *from wtforms…...

怎样做自己网站/今日新闻最新头条10条

0 引 言 近些年来,随着计算机应用需求的不断增强,计算机科学与技术的发展日新月异。然而在这种快速发展的同时,也面临着种种的困难。主要的困难包括:知识的表示、信息的组织、软件的复用等。特别是由于因特网的快速发展,面对信息的海洋,如何组织、管理和维护海量信息并为…...

wordpress上一篇下一篇插件/类似互推商盟的推广平台

大家在玩手机的时候有没有一个苦恼&#xff1a;手机屏幕太小了&#xff0c;看久了眼睛又累又花&#xff0c;好想把手机屏幕投屏到电脑上&#xff0c;这样就可以解决问题了。下面小编就给大家讲讲手机投屏到Win10电脑上的操作方法。方法&#xff1a;通过Win10自带的投影功能第一…...

做域名代理网站/域名注册需要什么条件

EtherChannel EtherChannel(以太通道)是由Cisco研发的&#xff0c;应用于交换机之间的多链路捆绑技术。它的基本原理是&#xff1a;将两个设备间多条相同特性的快速以太或千兆位以太物理链路捆绑在一起组成一条逻辑链路&#xff0c;从而达到带宽倍增的目的。除了增加带宽外&…...

wordpress分类文章置顶/市场调研方法有哪几种

2019前端面试复习总结 1、 js的运行机制 同步和异步 js是单线程的语言&#xff0c;但它既能执行同步任务&#xff0c;又能执行异步任务。首先&#xff0c;它有一个主线程&#xff0c;所有的同步任务都放在主线程的执行栈中执行&#xff0c;主线程里一段事件内只能做一件事。它还…...

自己做网站还是用别人网站/整站seo服务

使用回溯查找错误 Python中的异常是语言的核心功能。 回溯 回溯几乎始终包含以下信息&#xff1a; 涉及对每个函数的每次调用的所有文件路径与每个文件路径关联的行号产生异常时涉及的函数、方法或类的名称引发的异常的名称Python 3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 20…...