【mindspore学习】环境配置
本次实验搭配的环境是 CUDA 11.6 + CUDNN v8.9.4 + TensorRT-8.4.1.5 + mindspore 2.1.0。
1、配置 Nvidia 显卡驱动
如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动
sudo apt-get --purge remove nvidia*
sudo apt autoremove
sudo apt-get --purge remove "*cublas*" "cuda*"
sudo apt-get --purge remove "*nvidia*"
sudo apt-get install linux-headers-$(uname -r)
关闭系统自带驱动nouveau,执行 sudo gedit /etc/modprobe.d/blacklist.conf 在末尾追加
blacklist nouveau
options nouveau modeset=0
sudo update-initramfs -u
安装NVIDIA驱动 下载地址
chmod a+x NVIDIA-Linux-x86_64-535.104.05.run
./NVIDIA-Linux-x86_64-535.104.05.run -no-x-check -no-nouveau-check -no-opengl-files
sudo bash ./NVIDIA-Linux-x86_64-535.104.05.run -no-x-check -no-nouveau-check -no-opengl-files
安装之后先重启主机 (执行 sudo reboot),然后检查驱动(执行nvidia-smi)是否安装成功

出现图示结果代表驱动安装成功
2、安装 CUDA-11.6
## 先安装CUDA前需要先安装相关依赖,执行以下命令
sudo apt-get install linux-headers-$(uname -r)
wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run
sudo sh cuda_11.6.0_510.39.01_linux.run
echo -e "export PATH=/usr/local/cuda-11.6/bin:\$PATH" >> ~/.bashrc
echo -e "export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
安装之后执行 nvcc --version 命令检查会输出以下提示

3、安装 CUDA-11.6配套的cuDNN v8.9.4
tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar
sudo cp cudnn-linux-x86_64-8.9.4.25_cuda11-archive/include/cudnn*.h /usr/local/cuda-11.6/include
sudo cp cudnn-linux-x86_64-8.9.4.25_cuda11-archive/lib64/libcudnn* /usr/local/cuda-11.6/lib64
sudo chmod a+r /usr/local/cuda-11.6/include/cudnn*.h /usr/local/cuda-11.6/lib64/libcudnn*
检查 CUDNN 是否安装成功
cat /usr/local/cuda-11.6/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

输出上图结果表示配置成功,这里版本好是8.9.4
4、安装 minconda
下载可以从清华镜像源选择下载
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh
chmod a+x Miniconda3-py39_4.9.2-Linux-x86_64.sh
bash Miniconda3-py39_4.9.2-Linux-x86_64.sh
. ~/miniconda3/etc/profile.d/conda.sh
使用 conda 创建 mindspore 虚拟环境
conda init bash
conda create -n mindspore_py37 python=3.7.5 -y
conda activate mindspore_py37
设置 pip 源,这里可以选择清华源或者华为源,二选一。
python -m pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set global.index-url https://repo.huaweicloud.com/repository/pypi/simple
5、安装 TensorRT-8.4.1.5 下载地址
tar -xvf TensorRT-8.4.1.5.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
cd TensorRT-8.4.1.5/
echo -e "export TENSORRT_HOME=$PWD" >> ~/.bashrc
echo -e "export LD_LIBRARY_PATH=\$TENSORRT_HOME/lib:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
通过 .whl 包安装 python 版本 tensorrt
cd $TENSORRT_HOME/python
pip install tensorrt-8.4.1.5-cp37-none-linux_x86_64.whl
执行测试
python -c "import tensorrt;print(tensorrt.__version__)"

6、安装 mindspore 2.1.0
export MS_VERSION=2.1.0
conda activate mindspore_py37
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/${MS_VERSION}/MindSpore/unified/x86_64/mindspore-${MS_VERSION/-/}-cp37-cp37m-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
mindspore GPU 检查
python -c "import mindspore;mindspore.set_context(device_target='GPU');mindspore.run_check()"

7、 jupyter lab mindspore 环境管理
在 base 环境下安装 Jupyter Lab
conda activate base
conda install jupyter ipykernel
在 mindspore_py37 中安装 ipykernel
conda activate mindspore_py37
conda install ipykernel
将conda环境写入jupyter的kernel中
–name 环境名称
–display-name 在jupyter notebook看到的别名
python -m ipykernel install --user --name mindspore_py37 --display-name "mindspore_py37"
运行 jupyter lab
conda activate base
jupyter lab

讲 kernel 切换成 mindspore_py37 就可以在 Notebook 下使用 mindspore 进行脚本运行了
参考:
- https://blog.csdn.net/wm9028/article/details/110268030
- https://gitee.com/mindspore/docs/blob/master/install/mindspore_gpu_install_pip.md#%E5%AE%89%E8%A3%85cuda
- https://blog.csdn.net/weixin_37926734/article/details/123033286
- https://zhuanlan.zhihu.com/p/370024835
相关文章:
【mindspore学习】环境配置
本次实验搭配的环境是 CUDA 11.6 CUDNN v8.9.4 TensorRT-8.4.1.5 mindspore 2.1.0。 1、配置 Nvidia 显卡驱动 如果原来的主机已经安装了 nvidia 驱动,为避免版本的冲突,建议先清除掉旧的 nvidia驱动 sudo apt-get --purge remove nvidia* sudo apt…...
基于shell脚本对aliyun npm仓库(https://packages.aliyun.com)登录认证
文章目录 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证食用人群食用方式 基于shell脚本对阿里云npm仓库(https://packages.aliyun.com)登录认证 食用人群 由于一些安全的原因,某些企业可能会…...
K8s Pod 安全认知:从openshift SCC 到 PSP 弃用以及现在的 PSA
写在前面 简单整理,博文内容涉及: PSP 的由来PSA 的发展PSA 使用认知不涉及使用,用于了解 Pod 安全 API 资源理解不足小伙伴帮忙指正对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是…...
提高企业会计效率,选择Manager for Mac(企业会计软件)
作为一家企业,良好的财务管理是保持业务运转的关键。而选择一款适合自己企业的会计软件,能够帮助提高会计效率、减少错误和节约时间。在众多的选择中,Manager for Mac(企业会计软件)是一款值得考虑的优秀软件。 首先,Manager for…...
软考:中级软件设计师:信息系统的安全属性,对称加密和非对称加密,信息摘要,数字签名技术,数字信封与PGP
软考:中级软件设计师:信息系统的安全属性 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准…...
Vue3中reactive响应式失效的问题
情景阐述 弹窗内部有一个挑选框,要通过请求接口获取挑选框下面可供选择的数据。 这是一个很简单的情境,我立刻有了自己的思路。如果实现搜索,数据较少可以直接用elementplus自带的filter。如果数据较多,就需要传val,…...
lamp
LAMP 环境 指的是在 Linux 操作系统中分别安装 Apache 网页服务器、MySQL 数据库服务器和 PHP 开发服务器,以及一些对应的扩展软件。AMP也支持win操作系统 (sccm 域升级版) LAMP架构是目前成熟的企业网站应用模式之一,指的是协同…...
LeetCode 周赛上分之旅 #42 当 LeetCode 考树上倍增,出题的趋势在变化吗
⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度…...
Qt 自定义菜单 托盘菜单
托盘菜单实现:通过QSystemTrayIconQMenuQAction即可完美实现! 实现方式:createActions用于创建菜单、菜单项,translateActions用于设置文本、实现多语化,translateAccount用于设置用户空间配额。 void TrayMenu::createActions(…...
channel并发编程
不要通过共享内存通信,要通过通信共享内存。 channel是golang并发编程中一种重要的数据结构,用于多个goroutine之间进行通信。 我们通常可以把channel想象成一个传送带,将goroutine想象成传送带周边的人,一个传送带的上游放上物品…...
苹果新健康专利:利用 iPhone、Apple Watch 来分析佩戴者的呼吸情况
根据美国商标和专利局(USPTO)公示的清单,苹果获得了一项健康相关的技术专利,可以利用 iPhone、Apple Watch 来分析佩戴者的呼吸系统。 苹果在专利中概述了一种测量用户呼吸功能的系统,通过 iPhone 上的光学感测单元&am…...
数据分析基础-数据可视化02-不同数据类型的可视化概念及原则
将数据空间映射到颜色空间。 数据空间:连续或分类 数据可以被划分为两个主要的数据空间:连续数据和分类数据。这两种数据空间有不同的特点和适用的分析方法。 连续数据(Continuous Data): 连续数据是指可以在某个范…...
QT项目使用Qss的总结
什么是QSS QSS称为Qt Style Sheets也就是Qt样式表,它是Qt提供的一种用来自定义控件外观的机制。QSS大量参考了CSS的内容,只不过QSS的功能比CSS要弱很多,体现在选择器要少,可以使用的QSS属性也要少很多,并且并不是所有…...
suricata初体验+wireshark流量分析
目录 一、suricata介绍 1.下载安装 2.如何使用-攻击模拟 二、wireshark流量分析 1.wireshark过滤器使用 2.wireshark其他使用 一、suricata介绍 1.下载安装 通过官网下载suricata,根据官网步骤进行安装。 官网地址: https://documentation.wazuh.…...
机器学习:异常检测实战
文章目录 Anomaly Detection目录任务介绍数据集方法评估Baseline报告报告评价标准 Anomaly Detection 目录 任务介绍 无监督的异常检测 数据集 方法 autoencode 是否能够还原出原始类型图片,基于重构loss来判断是否正常 重构误差当作异常分数 评估 采用ROC和AUC…...
数据结构1
数据结构是计算机科学中存储和组织数据的一种方式,它定义了数据的表示方式和对数据进行操作的方法,常见的数据结构包括数组、栈、链表、队列、树、图等。 目录 一、常见的数据结构 1.数组 2.栈 3.队列 4.链表 5.树 6.图 一、常见的数据结构 1.数…...
自然语言处理学习笔记(七)————字典树效率改进
目录 1. 首字散列其余二分的字典树 2.双数组字典树 3.AC自动机(多模式匹配) (1)goto表 (2)output表 (3)fail表 4.基于双数组字典树的AC自动机 字典树的数据结构在以上的切分算法中已经很快了&#x…...
forEach和map有什么区别,使用场景?
forEach和map有什么区别,使用场景? 区别什么意思?forEach: 不直接改变原始数组,但可以在回调中更改原始数组。 区别 forEach 和 map 都是数组的常用方法,但它们有不同的目的和用法。下面是它们之间的主要区别以及各自…...
【Spring Boot】SpringBoot完整实现社交网站系统
一个完整的社交网站系统需要涉及到用户登录、发布动态、关注、评论、私信等各方面。这里提供一个简单的实现示例,供参考。 前端代码 前端使用Vue框架,以下是部分代码示例: 登录页: <template><div><input type…...
Modbus转Profinet网关连接三菱变频器博图快速配置
本案例将分享如何使用兴达易控的modbus转profinet网关(XD-MDPN100)来连接西门子1200系列plc,并实现三菱变频器的485通讯兼容转modbusTCP通信。通过在博图中进行配置,我们可以实现设备之间的连接和通信。 首先,我们需要…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
