当前位置: 首页 > news >正文

C#,数值计算——调适数值积分法(adaptive quadrature)的计算方法与源程序

 

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// 调适数值积分法
    /// adaptive quadrature
    /// </summary>
    public class Adapt
    {
        private double x1 { get; } = 0.942882415695480;
        private double x2 { get; } = 0.641853342345781;
        private double x3 { get; } = 0.236383199662150;
        private double TOL { get; set; }
        private double toler { get; set; }
        private double alpha { get; set; }
        private double beta { get; set; }
        private double[] x { get; set; }

        public bool terminate { get; set; }
        public bool out_of_tolerance { get; set; }

        public Adapt(double tol)
        {
            alpha = Math.Sqrt(2.0 / 3.0);
            beta = 1.0 / Math.Sqrt(5.0);
            x = new double[] { 0, -x1, -alpha, -x2, -beta, -x3, 0.0, x3, beta, x2, alpha, x1 };

            this.TOL = tol;
            this.terminate = true;
            this.out_of_tolerance = false;
            double EPS = float.Epsilon;
            if (TOL < 10.0 * EPS)
            {
                TOL = 10.0 * EPS;
            }
        }

        public double integrate(UniVarRealValueFun func, double a, double b)
        {
            double[] y = new double[13];

            double m = 0.5 * (a + b);
            double h = 0.5 * (b - a);
            double fa = y[0] = func.funk(a);
            double fb = y[12] = func.funk(b);
            for (int i = 1; i < 12; i++)
            {
                y[i] = func.funk(m + x[i] * h);
            }
            double i2 = (h / 6.0) * (y[0] + y[12] + 5.0 * (y[4] + y[8]));
            double i1 = (h / 1470.0) * (77.0 * (y[0] + y[12]) + 432.0 * (y[2] + y[10]) + 625.0 * (y[4] + y[8]) + 672.0 * y[6]);
            double xs = h * (0.0158271919734802 * (y[0] + y[12]) + 0.0942738402188500 * (y[1] + y[11]) + 0.155071987336585 * (y[2] + y[10]) + 0.188821573960182 * (y[3] + y[9]) + 0.199773405226859 * (y[4] + y[8]) + 0.224926465333340 * (y[5] + y[7]) + 0.242611071901408 * y[6]);
            double erri1 = Math.Abs(i1 - xs);
            double erri2 = Math.Abs(i2 - xs);
            double r = (erri2 != 0.0) ? erri1 / erri2 : 1.0;
            toler = (r > 0.0 && r < 1.0) ? TOL / r : TOL;
            //if (xs == 0.0)
            if (Math.Abs(xs) <= float.Epsilon)
            {
                xs = b - a;
            }
            xs = Math.Abs(xs);
            return adaptlob(func, a, b, fa, fb, xs);
        }

        public double adaptlob(UniVarRealValueFun func, double a, double b, double fa, double fb, double xs)
        {
            double m = 0.5 * (a + b);
            double h = 0.5 * (b - a);
            double mll = m - alpha * h;
            double ml = m - beta * h;
            double mr = m + beta * h;
            double mrr = m + alpha * h;
            double fmll = func.funk(mll);
            double fml = func.funk(ml);
            double fm = func.funk(m);
            double fmr = func.funk(mr);
            double fmrr = func.funk(mrr);
            double i2 = h / 6.0 * (fa + fb + 5.0 * (fml + fmr));
            double i1 = h / 1470.0 * (77.0 * (fa + fb) + 432.0 * (fmll + fmrr) + 625.0 * (fml + fmr) + 672.0 * fm);

            if (Math.Abs(i1 - i2) <= toler * xs || mll <= a || b <= mrr)
            {
                if ((mll <= a || b <= mrr) && terminate)
                {
                    out_of_tolerance = true;
                    terminate = false;
                }
                return i1;
            }
            else
            {
                return adaptlob(func, a, mll, fa, fmll, xs) +
                    adaptlob(func, mll, ml, fmll, fml, xs) +
                    adaptlob(func, ml, m, fml, fm, xs) +
                    adaptlob(func, m, mr, fm, fmr, xs) +
                    adaptlob(func, mr, mrr, fmr, fmrr, xs) +
                    adaptlob(func, mrr, b, fmrr, fb, xs);
            }
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// 调适数值积分法/// adaptive quadrature/// </summary>public class Adapt{private double x1 { get; } = 0.942882415695480;private double x2 { get; } = 0.641853342345781;private double x3 { get; } = 0.236383199662150;private double TOL { get; set; }private double toler { get; set; }private double alpha { get; set; }private double beta { get; set; }private double[] x { get; set; }public bool terminate { get; set; }public bool out_of_tolerance { get; set; }public Adapt(double tol){alpha = Math.Sqrt(2.0 / 3.0);beta = 1.0 / Math.Sqrt(5.0);x = new double[] { 0, -x1, -alpha, -x2, -beta, -x3, 0.0, x3, beta, x2, alpha, x1 };this.TOL = tol;this.terminate = true;this.out_of_tolerance = false;double EPS = float.Epsilon;if (TOL < 10.0 * EPS){TOL = 10.0 * EPS;}}public double integrate(UniVarRealValueFun func, double a, double b){double[] y = new double[13];double m = 0.5 * (a + b);double h = 0.5 * (b - a);double fa = y[0] = func.funk(a);double fb = y[12] = func.funk(b);for (int i = 1; i < 12; i++){y[i] = func.funk(m + x[i] * h);}double i2 = (h / 6.0) * (y[0] + y[12] + 5.0 * (y[4] + y[8]));double i1 = (h / 1470.0) * (77.0 * (y[0] + y[12]) + 432.0 * (y[2] + y[10]) + 625.0 * (y[4] + y[8]) + 672.0 * y[6]);double xs = h * (0.0158271919734802 * (y[0] + y[12]) + 0.0942738402188500 * (y[1] + y[11]) + 0.155071987336585 * (y[2] + y[10]) + 0.188821573960182 * (y[3] + y[9]) + 0.199773405226859 * (y[4] + y[8]) + 0.224926465333340 * (y[5] + y[7]) + 0.242611071901408 * y[6]);double erri1 = Math.Abs(i1 - xs);double erri2 = Math.Abs(i2 - xs);double r = (erri2 != 0.0) ? erri1 / erri2 : 1.0;toler = (r > 0.0 && r < 1.0) ? TOL / r : TOL;//if (xs == 0.0)if (Math.Abs(xs) <= float.Epsilon){xs = b - a;}xs = Math.Abs(xs);return adaptlob(func, a, b, fa, fb, xs);}public double adaptlob(UniVarRealValueFun func, double a, double b, double fa, double fb, double xs){double m = 0.5 * (a + b);double h = 0.5 * (b - a);double mll = m - alpha * h;double ml = m - beta * h;double mr = m + beta * h;double mrr = m + alpha * h;double fmll = func.funk(mll);double fml = func.funk(ml);double fm = func.funk(m);double fmr = func.funk(mr);double fmrr = func.funk(mrr);double i2 = h / 6.0 * (fa + fb + 5.0 * (fml + fmr));double i1 = h / 1470.0 * (77.0 * (fa + fb) + 432.0 * (fmll + fmrr) + 625.0 * (fml + fmr) + 672.0 * fm);if (Math.Abs(i1 - i2) <= toler * xs || mll <= a || b <= mrr){if ((mll <= a || b <= mrr) && terminate){out_of_tolerance = true;terminate = false;}return i1;}else{return adaptlob(func, a, mll, fa, fmll, xs) +adaptlob(func, mll, ml, fmll, fml, xs) +adaptlob(func, ml, m, fml, fm, xs) +adaptlob(func, m, mr, fm, fmr, xs) +adaptlob(func, mr, mrr, fmr, fmrr, xs) +adaptlob(func, mrr, b, fmrr, fb, xs);}}}
}

相关文章:

C#,数值计算——调适数值积分法(adaptive quadrature)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 调适数值积分法 /// adaptive quadrature /// </summary> public class Adapt { private double x1 { get; } 0.942882415695480; private …...

微信小程序发布迭代版本后如何提示用户强制更新新版本

在点击小程序发布的时候选择&#xff0c;升级选项 之前用户使用过的再打开小程序页面就会弹出升级弹窗modal...

星际争霸之小霸王之小蜜蜂(七)--消失的子弹

目录 前言 一、删除子弹 二、限制子弹数量 三、继续重构代码 总结 前言 昨天我们已经让子弹飞了起来&#xff0c;但是会面临一个和之前小蜜蜂一样的问题&#xff0c;小蜜蜂的行动应该限制在窗口内&#xff0c;那么子弹也是有相同之处&#xff0c;也需要限制一个移动范围&…...

Hadoop入门机安装hadoop

0目录 1.Hadoop入门 2.linux安装hadoop 1.Hadoop入门 定义 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下&#xff0c;开发分布式程序。充分利用集群的威力进行高速运算和存储。 优势 高可靠性&#xff1a;Hadoop底层维护多…...

cookie技术介绍

title: cookie技术 date: 2023-08-27 21:34:19 tags: [cookie, 网络, http] categories: 网络 我们经常说的cookie缓存数据&#xff0c;允许cookie是什么意思? Cookie也被称作Cookies&#xff0c;它是一种让网站的服务器端可以把少量数据存储在客户端的硬盘或内存中&#x…...

网络摄像头:SparkoCam Crack

SparkoCam 网络摄像头软件 SparkoCam 是一款网络摄像头和视频效果软件&#xff0c;用于广播实时网络摄像头效果并将其应用到视频聊天和录音中。 使用佳能/尼康数码单反相机作为常规网络摄像头通过向实时视频聊天和视频录制添加酷炫的网络摄像头效果和图形来增强 USB 网络摄像…...

【缓存设计】记一种不错的缓存设计思路

文章目录 前言场景设计思路小结 前言 之前与同事讨论接口性能问题时听他介绍了一种缓存设计思路&#xff0c;觉得不错&#xff0c;做个记录供以后参考。 场景 假设有个以下格式的接口&#xff1a; GET /api?keys{key1,key2,key3,...}&types{1,2,3,...}其中 keys 是业务…...

微信小程序大学校园二手教材与书籍拍卖系统设计与实现

摘 要 随着应用技术的发展以及电子商务平台的崛起&#xff0c;利用线上平台实现的二手交易为传统的二手交易市场注入了新的生机&#xff0c;大学校园内的新生和应届毕业生的相互交替产生了巨大的二手交易空间&#xff0c;同时考虑到环保和资源再利用&#xff0c;大学校园的书籍…...

涛然自得周刊(第06期):韩版苏东坡的突围

作者&#xff1a;何一涛 日期&#xff1a;2023 年 8 月 27 日 涛然自得周刊主要精选作者阅读过的书影音内容&#xff0c;不定期发布。历史周刊内容可以看这里。 电影 兹山鱼谱 讲述丁若铨因政治事件被贬黜到了遥远的黑山岛。来到岛上后&#xff0c;丁被大自然环境疗愈&#…...

DOCKER 部署 webman项目

# 设置基础镜像 FROM php:8.2-fpm# 安装必要的软件包和依赖项 RUN apt-get update && apt-get install -y \nginx \libzip-dev \libpng-dev \libjpeg-dev \libfreetype6-dev \&& rm -rf /var/lib/apt/lists/*# 安装 PHP 扩展 RUN docker-php-ext-configure gd …...

LLMs:LangChain-Chatchat(一款可实现本地知识库问答应用)的简介、安装、使用方法之详细攻略

LLMs&#xff1a;LangChain-Chatchat(一款可实现本地知识库问答应用)的简介、安装、使用方法之详细攻略 目录 LangChain-Chatchat的简介 1、原理图解 2、文档处理实现流程 1、模型支持 (1)、LLM 模型支持 (2)、Embedding 模型支持 LangChain-Chatchat的安装 1、镜像部署…...

Qt 解析XML文件 QXmlStreamReader

如何使用QXmlStreamReader来解析格式良好的XML&#xff0c;Qt的文档中指出&#xff0c;它是一种更快、更方便的Qt自己的SAX解析器&#xff08;QXmlSimpleReader&#xff09;的替代&#xff0c;它也较快&#xff0c;在某种情况下&#xff0c;比DOM&#xff08;QDomDocument&…...

图像线段检测几种方法

1、方法一 当我将OpenCV提升到4.1.0时&#xff0c;LineSegmentDetector&#xff08;LSD&#xff09;消失了。 OpenCV-contrib有一个名为FastLineDetector的东西&#xff0c;如果它被用作LSD的替代品似乎很好。如果你有点感动&#xff0c;你会得到与LSD几乎相同的结果。 2、方…...

【Vue2.0源码学习】生命周期篇-初始化阶段(initEvents)

文章目录 1. 前言2. 解析事件3. initEvents函数分析4. 总结 1. 前言 本篇文章介绍生命周期初始化阶段所调用的第二个初始化函数——initEvents。从函数名字上来看&#xff0c;这个初始化函数是初始化实例的事件系统。我们知道&#xff0c;在Vue中&#xff0c;当我们在父组件中…...

SQL高级知识点

MySQL基础 1、安装 1)设置编码 2)设置密码 2、配置文件&#xff1a;my.ini、my.cnf 1)设置端口号 port3306 2)设置编码 default-character-setutf8character-set-serverutf8 3)存储引擎 default-storage-engineINNODB 4)最大连接数 max_connections100 注意&…...

【安全】原型链污染 - Code-Breaking 2018 Thejs

目录 准备工作 环境搭建 加载项目 复现 代码审计 payload 总结 准备工作 环境搭建 Nodejs BurpSuite 加载项目 项目链接 ① 下载好了cmd切进去 ② 安装这个项目 可以检查一下 ③运行并监听 可以看到已经在3000端口启动了 复现 代码审计 const fs require(fs) cons…...

【架构】探索计算机处理器的世界:ARM和x86架构解析及指令集

目录 导语ARM架构x86架构AMD公司对比与应用不同架构处理器的指令集结语 导语 计算机处理器是数字化时代的核心引擎&#xff0c;而在众多处理器架构中&#xff0c;ARM和x86是备受关注的三个。本文将带您深入探索这三个架构&#xff0c;介绍它们的特点、公司背景以及应用领域。让…...

SpringBoot权限认证

SpringBoot的安全 常用框架&#xff1a;Shrio,SpringSecurity 两个功能&#xff1a; Authentication 认证Authorization 授权 权限&#xff1a; 功能权限访问权限菜单权限 原来用拦截器、过滤器来做&#xff0c;代码较多。现在用框架。 SpringSecurity 只要引入就可以使…...

OpenGL-入门-BMP像素图glReadPixels

glReadPixels函数用于从帧缓冲区中读取像素数据。它可以用来获取屏幕上特定位置的像素颜色值或者获取一块区域内的像素数据。下面是该函数的基本语法&#xff1a; void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid *da…...

同源策略以及SpringBoot的常见跨域配置

先说明一个坑。在跨域的情况下&#xff0c;浏览器针对复杂请求&#xff0c;会发起预检OPTIONS请求。如果服务端对OPTIONS进行拦截&#xff0c;并返回非200的http状态码。浏览器一律提示为cors error。 一、了解跨域 1.1 同源策略 浏览器的同源策略&#xff08;Same-Origin Po…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...