利用多种机器学习方法对爬取到的谷歌趋势某个关键词的每日搜索次数进行学习
大家好,我是带我去滑雪!
前一期利用python爬取了谷歌趋势某个关键词的每日搜索次数,本期利用爬取的数据进行多种机器学习方法进行学习,其中方法包括:随机森林、XGBOOST、决策树、支持向量机、神经网络、K邻近等方法,并对模型拟合效果进行对比。下面开始实战!
目录
(1)导入相关模块与爬取到的数据
(2)划分训练集与测试集
(3)保存真实值并对数据进行标准化
(4)调用模块
(5)回归交叉验证、计算评价指标
(6)评价指标可视化
(1)导入相关模块与爬取到的数据
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold,StratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVR
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
get_ipython().run_line_magic('matplotlib', 'inline')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
import warnings
import seaborn as sns
import datetime
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi'] #中文
plt.rcParams['axes.unicode_minus'] = False #负号
get_ipython().run_line_magic('matplotlib', 'inline')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import warnings
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
plt.rcParams['font.sans-serif'] = ['KaiTi']
plt.rcParams['axes.unicode_minus'] = False
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import ElasticNet
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost.sklearn import XGBRegressor
from lightgbm import LGBMRegressor
from sklearn.svm import SVR
from sklearn.neural_network import MLPRegressor
data=pd.read_csv('E:/工作/硕士/博客/博客粉丝问题/data.csv')
data=data.iloc[0:1516,]
data输出结果:
zc rvw2 rvm2 tai eni aoi news1 skew2 kurt2 rvh 0 1.121 0.914 0.897 1.11 -0.1 0.340 0.83 1.251598 2.076749 0.545 1 0.545 0.869 0.881 1.11 -0.1 0.340 0.74 -0.170641 -1.551454 1.128 2 1.128 0.934 0.909 1.11 -0.1 0.340 0.77 -0.812615 0.216697 1.607 3 1.607 1.173 0.969 1.11 -0.1 0.340 0.79 1.597147 1.559141 0.547 4 0.547 0.990 0.915 1.11 -0.1 0.340 1.00 0.648262 0.772539 2.588 ... ... ... ... ... ... ... ... ... ... ... 1511 0.503 0.953 1.226 0.87 1.4 -0.674 0.92 -0.647114 0.750049 1.414 1512 1.414 1.068 1.266 0.87 1.4 -0.674 0.97 -1.045306 -0.604874 0.873 1513 0.873 1.046 1.273 0.87 1.4 -0.674 0.85 1.170148 0.211409 0.492 1514 0.492 0.867 1.259 0.87 1.4 -0.674 0.87 -1.124157 0.434954 0.747 1515 0.747 0.806 1.272 0.87 1.4 -0.674 0.73 0.732621 -1.058271 0.839 1516 rows × 10 columns
其中rvh为响应变量,其他为特征变量。
(2)划分训练集与测试集
X=data.iloc[:,0:9]
y=data.iloc[:,9]
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state = 0)
#可以检查一下划分后数据形状
X_train.shape,X_test.shape, y_train.shape, y_test.shape输出结果:
((1212, 9), (304, 9), (1212,), (304,))
(3)保存真实值并对数据进行标准化
#数据标准化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_s = scaler.transform(X_train)
X_test_s = scaler.transform(X_test)
print('训练数据形状:')
print(X_train_s.shape,y_train.shape)
print('测试数据形状:')
(X_test_s.shape,y_test.shape)输出结果:
训练数据形状:(1212, 9) (1212,) 测试数据形状:((304, 9), (304,))
(4)调用模块
model1 = LinearRegression()
model2 = ElasticNet(alpha=0.05, l1_ratio=0.5)
model3 = KNeighborsRegressor(n_neighbors=10)
model4 = DecisionTreeRegressor(random_state=77)
model5= RandomForestRegressor(n_estimators=500, max_features=int(X_train.shape[1]/3) , random_state=0)
model6 = GradientBoostingRegressor(n_estimators=500,random_state=123)
model7 = XGBRegressor(objective='reg:squarederror', n_estimators=1000, random_state=0)
model8 = LGBMRegressor(n_estimators=1000,objective='regression', # 默认是二分类
random_state=0)
model9 = SVR(kernel="rbf")
model10 = MLPRegressor(hidden_layer_sizes=(16,8), random_state=77, max_iter=10000)
model_list=[model1,model2,model3,model4,model5,model6,model7,model8,model9,model10]
model_name=['线性回归','惩罚回归','K近邻','决策树','随机森林','梯度提升','极端梯度提升','轻量梯度提升','支持向量机','神经网络']
(5)回归交叉验证、计算评价指标
#回归问题交叉验证,使用拟合优度,mae,rmse,mape 作为评价标准
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import KFold
def evaluation(y_test, y_predict):
mae = mean_absolute_error(y_test, y_predict)
mse = mean_squared_error(y_test, y_predict)
rmse = np.sqrt(mean_squared_error(y_test, y_predict))
mape=(abs(y_predict -y_test)/ y_test).mean()
r_2=r2_score(y_test, y_predict)
return mae, rmse, mape
def evaluation2(lis):
array=np.array(lis)
return array.mean() , array.std()def cross_val(model=None,X=None,Y=None,K=5,repeated=1):
df_mean=pd.DataFrame(columns=['R2','MAE','RMSE','MAPE'])
df_std=pd.DataFrame(columns=['R2','MAE','RMSE','MAPE'])
for n in range(repeated):
print(f'正在进行第{n+1}次重复K折.....随机数种子为{n}\n')
kf = KFold(n_splits=K, shuffle=True, random_state=n)
R2=[]
MAE=[]
RMSE=[]
MAPE=[]
print(f" 开始本次在{K}折数据上的交叉验证.......\n")
i=1
for train_index, test_index in kf.split(X):
print(f' 正在进行第{i}折的计算')
X_train=X.values[train_index]
y_train=y.values[train_index]
X_test=X.values[test_index]
y_test=y.values[test_index]
model.fit(X_train,y_train)
score=model.score(X_test,y_test)
R2.append(score)
pred=model.predict(X_test)
mae, rmse, mape=evaluation(y_test, pred)
MAE.append(mae)
RMSE.append(rmse)
MAPE.append(mape)
print(f' 第{i}折的拟合优度为:{round(score,4)},MAE为{round(mae,4)},RMSE为{round(rmse,4)},MAPE为{round(mape,4)}')
i+=1
print(f' ———————————————完成本次的{K}折交叉验证———————————————————\n')
R2_mean,R2_std=evaluation2(R2)
MAE_mean,MAE_std=evaluation2(MAE)
RMSE_mean,RMSE_std=evaluation2(RMSE)
MAPE_mean,MAPE_std=evaluation2(MAPE)
print(f'第{n+1}次重复K折,本次{K}折交叉验证的总体拟合优度均值为{R2_mean},方差为{R2_std}')
print(f' 总体MAE均值为{MAE_mean},方差为{MAE_std}')
print(f' 总体RMSE均值为{RMSE_mean},方差为{RMSE_std}')
print(f' 总体MAPE均值为{MAPE_mean},方差为{MAPE_std}')
print("\n====================================================================================================================\n")
df1=pd.DataFrame(dict(zip(['R2','MAE','RMSE','MAPE'],[R2_mean,MAE_mean,RMSE_mean,MAPE_mean])),index=[n])
df_mean=pd.concat([df_mean,df1])
df2=pd.DataFrame(dict(zip(['R2','MAE','RMSE','MAPE'],[R2_std,MAE_std,RMSE_std,MAPE_std])),index=[n])
df_std=pd.concat([df_std,df2])
return df_mean,df_stdmodel =RandomForestRegressor(n_estimators=500, max_features=int(X_train.shape[1]/3) , random_state=0)
ran_crosseval,lgb_crosseval2=cross_val(model=model,X=data,Y=y,K=3,repeated=5)输出结果:
正在进行第1次重复K折.....随机数种子为0开始本次在3折数据上的交叉验证.......正在进行第1折的计算第1折的拟合优度为:0.6359,MAE为0.5313,RMSE为2.4973,MAPE为0.8891正在进行第2折的计算第2折的拟合优度为:0.9329,MAE为0.2918,RMSE为0.6796,MAPE为3.6771正在进行第3折的计算第3折的拟合优度为:0.4618,MAE为0.4001,RMSE为3.7925,MAPE为1.6797———————————————完成本次的3折交叉验证———————————————————第1次重复K折,本次3折交叉验证的总体拟合优度均值为0.6768657819427061,方差为0.1944779600384177总体MAE均值为0.4077273555381626,方差为0.09794742090384587总体RMSE均值为2.32313716109176,方差为1.2768087853386325总体MAPE均值为2.081956991377407,方差为1.1732020214054228====================================================================================================================正在进行第2次重复K折.....随机数种子为1开始本次在3折数据上的交叉验证.......正在进行第1折的计算第1折的拟合优度为:0.9122,MAE为0.3241,RMSE为0.8612,MAPE为2.5479正在进行第2折的计算第2折的拟合优度为:0.5261,MAE为0.4917,RMSE为3.9197,MAPE为0.7314正在进行第3折的计算第3折的拟合优度为:0.7334,MAE为0.3584,RMSE为1.6217,MAPE为3.2285———————————————完成本次的3折交叉验证———————————————————第2次重复K折,本次3折交叉验证的总体拟合优度均值为0.723893113441683,方差为0.1577702476056785总体MAE均值为0.3914201753688413,方差为0.0723024001955509总体RMSE均值为2.134188184101481,方差为1.3001480884844312总体MAPE均值为2.16926700543488,方差为1.054037140770381====================================================================================================================正在进行第3次重复K折.....随机数种子为2开始本次在3折数据上的交叉验证.......正在进行第1折的计算第1折的拟合优度为:0.8149,MAE为0.3709,RMSE为1.2755,MAPE为3.4917正在进行第2折的计算第2折的拟合优度为:0.759,MAE为0.3612,RMSE为1.7133,MAPE为1.5378正在进行第3折的计算第3折的拟合优度为:0.4928,MAE为0.4426,RMSE为3.8865,MAPE为1.5668———————————————完成本次的3折交叉验证———————————————————第3次重复K折,本次3折交叉验证的总体拟合优度均值为0.688911890284598,方差为0.1405413525714651总体MAE均值为0.39156320132013217,方差为0.03629566064010328总体RMSE均值为2.2917865136481503,方差为1.1417413813810955总体MAPE均值为2.1988055874081742,方差为0.9143226546000691====================================================================================================================正在进行第4次重复K折.....随机数种子为3开始本次在3折数据上的交叉验证.......正在进行第1折的计算第1折的拟合优度为:0.8007,MAE为0.3457,RMSE为1.366,MAPE为0.6371正在进行第2折的计算第2折的拟合优度为:0.7519,MAE为0.4026,RMSE为1.6195,MAPE为2.696正在进行第3折的计算第3折的拟合优度为:0.5335,MAE为0.4128,RMSE为3.795,MAPE为3.053———————————————完成本次的3折交叉验证———————————————————第4次重复K折,本次3折交叉验证的总体拟合优度均值为0.6953494486212177,方差为0.11614834637464808总体MAE均值为0.38705033229496877,方差为0.029539032784274593总体RMSE均值为2.260164391836863,方差为1.09022294514881总体MAPE均值为2.1287335373456533,方差为1.0647308676641345====================================================================================================================正在进行第5次重复K折.....随机数种子为4开始本次在3折数据上的交叉验证.......正在进行第1折的计算第1折的拟合优度为:0.476,MAE为0.3845,RMSE为3.7705,MAPE为2.4277正在进行第2折的计算第2折的拟合优度为:0.6823,MAE为0.5015,RMSE为2.3399,MAPE为1.9511正在进行第3折的计算第3折的拟合优度为:0.9344,MAE为0.296,RMSE为0.6479,MAPE为2.1377———————————————完成本次的3折交叉验证———————————————————第5次重复K折,本次3折交叉验证的总体拟合优度均值为0.697579240530468,方差为0.1874164914708924总体MAE均值为0.39400183092135327,方差为0.08418015995547488总体RMSE均值为2.2527506508008055,方差为1.2762736734101292总体MAPE均值为2.17217444185678,方差为0.196086080141957====================================================================================================================
(6)评价指标可视化
plt.subplots(1,4,figsize=(16,3))
for i,col in enumerate(lgb_crosseval.columns):
n=int(str('14')+str(i+1))
plt.subplot(n)
plt.plot(ran_crosseval[col], c= 'dimgray', label='随机森林')
plt.plot(xgb_crosseval[col], c='aqua',marker='h', label='XGBOOST')
plt.plot(der_crosseval[col], c='teal',marker='p', label='决策树')
plt.plot(svr_crosseval[col], c='red',marker='*', label='支持向量机')
plt.plot(mlp_crosseval[col], c='lawngreen', marker='s',label='神经网络')
plt.plot(knr_crosseval[col], c='darkorange', marker='p',label='k邻近')
plt.title(f'不同模型的{col}对比')
plt.xlabel('重复交叉验证次数')
plt.ylabel(col,fontsize=16)
plt.legend(loc="upper right")
plt.tight_layout()
plt.savefig("squares.png",
bbox_inches ="tight",
pad_inches = 1,
transparent = True,
facecolor ="w",
edgecolor ='w',
dpi=300,
orientation ='landscape')输出结果:
(7)部分模型预测对比图
需要数据集的家人们可以去百度网盘(永久有效)获取:
链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138
提取码:2138
更多优质内容持续发布中,请移步主页查看。
有任何问题,欢迎私信博主!
点赞+关注,下次不迷路!
相关文章:

利用多种机器学习方法对爬取到的谷歌趋势某个关键词的每日搜索次数进行学习
大家好,我是带我去滑雪! 前一期利用python爬取了谷歌趋势某个关键词的每日搜索次数,本期利用爬取的数据进行多种机器学习方法进行学习,其中方法包括:随机森林、XGBOOST、决策树、支持向量机、神经网络、K邻近等方法&am…...

ARL资产侦察灯塔 指纹增强
项目:https://github.com/loecho-sec/ARL-Finger-ADD 下载项目后运行 python3 ARl-Finger-ADD.py https://你的vpsIP:5003/ admin password该项目中的finger.json可以自己找到其他的指纹完善,然后运行脚本添加指纹。...

javaee spring 自动注入,如果满足条件的类有多个如何区别
如图IDrinkDao有两个实现类 方法一 方法二 Resource(name“对象名”) Resource(name"oracleDrinkDao") private IDrinkDao drinkDao;...

sql语句中的ddl和dml
操作数据库:CRUD C(create) 创建 *数据库创建出来默认字符集为utf8 如果要更改字符集就 Create database 名称 character set gbk(字符集) *创建数据库:create database 名称 *先检查是否有该数据库在…...

学习JAVA打卡第四十一天
字符串与字符数组、字节数组 ⑴字符串与字符数组 String类的构造方法String(char a[])和String(char a[]),int offset,int length,分别用数组a中的全部字符和部分字符创建string对象。 String类也提供将string对象的字符序列存…...
leetcode SQL题目
文章目录 组合两个表第二高的薪水第N高的薪水分数排名连续出现的数字超过经理收入的员工查找重复的电子邮件从不订购的客户部门工资最高的员工部门工资前三高的所有员工删除重复的电子邮箱上升的温度游戏玩法分析Ⅰ游戏玩法Ⅳ 组合两个表 SELECT firstName,lastName,city,stat…...

计算机组成原理学习笔记-精简复习版
一、计算机系统概述 计算机系统硬件软件 计算机硬件的发展: 第一代计算机:(使用电子管)第二代计算机:(使用晶体管)第三代计算机:(使用较小规模的集成电路)第四代计算机:(使用较大规模的集成电路) 冯诺依曼体系结构…...

聊一聊微前端框架的选型和实现 | 业务平台
一、项目背景 目前,我们开发维护的项目主要有 6 个,但是分别对应 PC 和 H5 两个端: 如上图所示,我们 6个项目最开始是一个一个进行开发维护的,但是到后期,这几个项目之间有的部分会有业务逻辑不同ÿ…...

Elasticsearch 集成---框架集成SpringData-集成测试-索引操作
1.Spring Data 框架介绍 Spring Data 是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的 开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持 map-reduce 框架和云计 算数据服务。 Spring Data 可以极大的简化 JPA &a…...

将Series序列中的缺失值用后一个值填充Series.bfill()
【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 对于Series序列中的缺失值n1 用n1后面的值n2来填充替代 Series.bfill() [太阳]选择题 关于以下代码的说法中错误的是? import numpy as np import pandas as pd a pd.Series([1,np.nan,2,np.…...

用香港服务器域名需要备案吗?
在选择服务器的时候,很多人会考虑使用香港服务器。香港服务器的一个优势就是不需要备案。不管是虚拟主机还是云主机,无论是个人网站还是商业网站,都不需要进行备案手续。 域名实名认证 虽然不需要备案,但使用香港服务器搭建…...

【项目经理】项目管理杂谈
杂谈 1. 走上管理岗位,别再自己埋头干了2. 如何更好地管理项目进度3. 管理是“管事”而不是“管人”4. 让领导欣赏的十个沟通技巧在这里插入图片描述 1. 走上管理岗位,别再自己埋头干了 2. 如何更好地管理项目进度 3. 管理是“管事”而不是“管人” 4. 让…...
【算法总结篇】 笔面试常见题目
综述: 💞目的:本系列是个人整理为了秋招算法的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于网上知识点进行的,每个代码参考热门大佬博客和leetcode平台…...

Java基础 数据结构一【栈、队列】
什么是数据结构 数据结构是计算机科学中的一个重要概念,用于组织和存储数据以便有效地进行访问、操作和管理。它涉及了如何在计算机内存中组织数据,以便于在不同操作中进行查找、插入、删除等操作 数据结构可以看作是一种数据的组织方式,不…...

Spark on Yarn集群模式搭建及测试
🥇🥇【大数据学习记录篇】-持续更新中~🥇🥇 点击传送:大数据学习专栏 持续更新中,感谢各位前辈朋友们支持学习~ 文章目录 1.Spark on Yarn集群模式介绍2.搭建环境准备3.搭建步骤 1.Spark on Yarn集群模式介…...

vue 简单实验 v-on html事件绑定
1.代码 <script src"https://unpkg.com/vuenext" rel"external nofollow" ></script> <div id"event-handling"><p>{{ message }}</p><button v-on:click"reverseMessage">反转 Message</but…...

c#设计模式-创建型模式 之 原型模式
概述 原型模式是一种创建型设计模式,它允许你复制已有对象,而无需使代码依赖它们所属的类。新的对象可以通过原型模式对已有对象进行复制来获得,而不是每次都重新创建。 原型模式包含如下角色: 抽象原型类:规定了具…...

运放的分类、运放的参数
一、运放的分类 运放按功能分为通用运放与专用运放(高速运放、精密运放、低IB运放等)。 1.1通用运放 除廉价外,没有任何最优指标的运放。 例:uA741,LM324,TL06X,TL07X、TL08X等 国外知名运放…...

手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率
目录 手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率 前提条件 设置学习率 学习率的主流优化算法 手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率 我们明确了分类任务的损失函数(优化目标)的相关概念和实现方法ÿ…...

软件工程(二十) 系统运行与软件维护
1、系统转换计划 1.1、遗留系统的演化策略 时至今日,你想去开发一个系统,想完全不涉及到已有的系统,基本是不可能的事情。但是对于已有系统我们有一个策略。 比如我们是淘汰掉已有系统,还是继承已有系统,或者集成已有系统,或者改造遗留的系统呢,都是不同的策略。 技术…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...