2023年高教社杯 国赛数学建模思路 - 复盘:光照强度计算的优化模型
文章目录
- 0 赛题思路
- 1 问题要求
- 2 假设约定
- 3 符号约定
- 4 建立模型
- 5 模型求解
- 6 实现代码
- 建模资料
0 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
1 问题要求
现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
要求:
- (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
- (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
- (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
- (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?
(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)
2 假设约定
- 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
- 2 室内不受外界光源影响;
- 3 教室高度为2.5米;
- 4 不考虑光的反射;
- 5 线光源发光是均匀的.
3 符号约定
4 建立模型
5 模型求解
6 实现代码
matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了
clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),' ','y11=',num2str(y11),' ','x12=',num2str(x12),' ','y12=',num2str(y12),' ','x13=',num2str(x13),' ','y13=',num2str(y13),' ','x14=',num2str(x14),' ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),' ','y21=',num2str(y21),' ','x22=',num2str(x22),' ','y22=',num2str(y22),' ','x23=',num2str(x23),' ','y23=',num2str(y23),' ','x24=',num2str(x24),' ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1, x12=x2,y12=y2, x13=x3,y13=y3, x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),' ','y11=',num2str(y11),' ','x12=',num2str(x12),' ','y12=',num2str(y12),' ','x13=',num2str(x13),' ','y13=',num2str(y13),' ','x14=',num2str(x14),' ','y14=',num2str(y14)])
li
建模资料
资料分享: 最强建模资料
相关文章:

2023年高教社杯 国赛数学建模思路 - 复盘:光照强度计算的优化模型
文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米,宽为12米&…...

Netty简易聊天室
文章目录 本文目的参考说明环境说明maven依赖日志配置单元测试 功能介绍开发步骤 本文目的 通过一个简易的聊天室案例,讲述Netty的基本使用。同时分享案例代码。项目中用到了log4j2,junit5,同时分享这些基础组件的使用。项目中用到了awt&…...

Flutter Cannot run with sound null safety, because the following dependencies
flutter sdk 版本升级到2.0或者更高的版本后,运行之前的代码会报错 Error: Cannot run with sound null safety, because the following dependencies dont support null safety:- package:flutter_swiper- package:flutter_page_indicator- package:transformer_p…...

利用改进的遗传算法(种群隔离与个体迁移)mpi并行解决tsp问题
序 关于tsp问题的概述以及如何使用遗传算法进行求解已经在上一篇文章中说明了:遗传算法解决TSP问题. 但是,作为一种演化算法,遗传算法还存在着许多问题,比如早熟的情况,很容易在算法前期就已经收敛了,大量…...

【C++】—— C++11之线程库
前言: 在本期,我将给大家介绍的是 C11 中新引进的知识,即关于线程库的相关知识。 目录 (一)线程库的介绍 1、线程库的由来 2、线程库的简单介绍 (二)线程函数参数 (三…...

前端面试:【性能优化】前端缓存、CDN、懒加载和预加载
亲爱的前端开发者,Web性能对用户体验至关重要。如果你想让你的网站更快、更具吸引力,就需要关注前端性能优化。在这篇文章中,我们将深入探讨四个关键的性能优化策略:前端缓存、CDN(内容分发网络)、懒加载和…...

民族传统文化分享系统uniapp 微信小程序
管理员、用户可通过Android系统手机打开系统,注册登录后可进行管理员后端;首页、个人中心、用户管理、知识分类管理、知识资源管理、用户分享管理、意见反馈、系统管理,用户前端;首页、知识资源、用户分享、我的等。 本系统的使用…...

netty(二):NIO——处理可写事件
处理可写事件 什么情况下需要注册可写事件? 在服务端一次性无法把数据发送完的情况下,需要注册可写事件 服务端一次性是否能够把数据全部发送完成取决于服务端的缓冲区大小,该缓冲区不受程序控制 注册可写事件的步骤 判断ByteBuffer是否仍…...

PHP基本语法解析与应用指南
PHP(Hypertext Preprocessor)是一种广泛应用的开源脚本语言,特别适用于Web开发。本文将深入探讨PHP的基本语法,包括变量、数据类型、运算符、控制流等方面的内容。我们将详细介绍每个主题的基本概念、语法规则和常见应用ÿ…...

ICS PA1
ICS PA1 init.shmake 编译加速ISA计算机是个状态机程序是个状态机准备第一个客户程序parse_argsinit_randinit_loginit_meminit_isa load_img剩余的初始化工作运行第一个客户程序调试:零断点TUI 基础设施单步执行打印寄存器状态扫描内存 表达式求值词法分析递归求值…...

Java学数据结构(4)——散列表Hash table 散列函数 哈希冲突
目录 引出散列表Hash table关键字Key和散列函数(hash function)散列函数解决collision哈希冲突(碰撞)分离链接法(separate chaining)探测散列表(probing hash table)双散列(double hashing) Java标准库中的散列表总结 引出 1.散列表,key&…...

OVRL-V2: A simple state-of-art baseline for IMAGENAV and OBJECTNAV 论文阅读
论文信息 题目:OVRL-V2: A simple state-of-art baseline for IMAGENAV and OBJECTNAV 作者:Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya 来源:arxiv 时间:2023 代码地址: https://github.com/ykarmesh…...

【安全】原型链污染 - Hackit2018
目录 准备工作 解题 代码审计 Payload 准备工作 将这道题所需依赖模块都安装好后 运行一下,然后可以试着访问一下,报错是因为里面没内容而已,不影响,准备工作就做好了 解题 代码审计 const express require(express) var hbs require…...

net.ipv4.ip_forward=0导致docker容器无法与外部通信
在启动一个docker容器时报错: WARNING: IPv4 forwarding is disabled. Networking will not work. 并且,此时本机上的其他容器的网络服务,只能在本机上访问,其他机器上访问不到。 原因: sysctl net.ipv4.ip_forward …...

软考高级系统架构设计师系列论文九十八:论软件开发平台的选择与应用
软考高级系统架构设计师系列论文九十八:论软件开发平台的选择与应用 一、相关知识点二、摘要三、正文四、总结一、相关知识点 软考高级系统架构设计师系列之:面向构件的软件设计,构件平台与典型架构二、摘要 本文讨论选择新软件开发平台用于重新开发银行中间业务系统。银行中…...

Springboot整合WebFlux
一、使用WebFlux入门 WebFlux整合MysqlWebFlux整合ESWebFlus整合MongdbWebFlus整合Redis 1、添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-webflux</artifactId><version>2.2.1.…...

uniapp 实现地图距离计算
在uniapp中实现地图距离计算可以借助第三方地图服务API来实现。以下是一种基本的实现方式: 注册地图服务API账号:你可以选择使用高德地图、百度地图等提供地图服务的厂商,注册一个开发者账号并获取API密钥。 安装相关插件或SDK:根…...

破除“中台化”误区,两大新原则考核中后台
近年来,“中台化”已成为许多企业追求的目标,旨在通过打通前后台数据和业务流程,提升运营效率和创新能力。然而,在实施过程中,一些误解可能导致“中台化”未能如预期般发挥作用。本文将探讨这些误解,并提出…...

基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOV8模型和Kitti数据集的人工智能驾驶目标检测系统可用于日常生活中检测与定位车辆、汽车等目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用…...

基于Android的课程教学互动系统 微信小程序uniapp
教学互动是学校针对学生必不可少的一个部分。在学校发展的整个过程中,教学互动担负着最重要的角色。为满足如今日益复杂的管理需求,各类教学互动程序也在不断改进。本课题所设计的springboot基于Android的教学互动系统,使用SpringBoot框架&am…...

OpenCV基础知识(9)— 视频处理(读取并显示摄像头视频、播放视频文件、保存视频文件等)
前言:Hello大家好,我是小哥谈。OpenCV不仅能够处理图像,还能够处理视频。视频是由大量的图像构成的,这些图像是以固定的时间间隔从视频中获取的。这样,就能够使用图像处理的方法对这些图像进行处理,进而达到…...

PostgreSQL命令行工具psql常用命令
1. 概述 通常情况下操作数据库使用图形化客户端工具,在实际工作中,生产环境是不允许直接连接数据库主机,只能在跳板机上登录到Linux服务器才能连接数据库服务器,此时就需要使用到命令行工具。psql是PostgreSQL中的一个命令行交互…...

【CSS 画个梯形】
使用clip-path: polygon画梯形 clip-path: polygon使用方式如下: 效果实现 clip-path: polygon 是CSS的属性之一,用于裁剪元素的形状。它可以通过定义一个具有多边形顶点坐标的值来创建一个多边形的裁剪区域,从而实现元素的非矩形裁剪效果。…...

Spring Data Redis
文章目录 Redis各种Java客户端Spring Data Redis使用方式操作字符串类型的数据操作哈希类型数据列表类型集合类型有序集合类型通用类型 Redis各种Java客户端 Java中如何操作redis,这里主讲IDEA中的框架Spring Data Redis来操作redis Jedis是官方推出的,…...

软件测试的方法有哪些?
软件测试 根据利用的被测对象信息的不同,可以将软件测试方法分为:黑盒测试、灰盒测试、白盒测试。 1、白盒测试 1)概念:是依据被测软件分析程序内部构造,并根据内部构造分析用例,来对内部控制流程进行测试…...

Python Qt学习(二)Qt Designer
一开始以为Designer是个IDE,多番尝试之后,发现,是个UI设计工具,并不能在其中直接添加代码。保存之后,会生成一个后缀是UI的文件,再用pyuic5.exe将ui文件转化成py文件。pyuic5 -o 目标py文件 源ui文件...

我的数据上传类操作(以webDAV为例)
在登录处进行初始化: 1.读取配置 GModel.ServerSetin JsonToIni.GetClass<ServerSet>(ConfigFiles.ConfigFile);if (!string.IsNullOrWhiteSpace(GModel.ServerSetin.FTPUser)){OPCommon.NetControls.NetworkShareConnect.connectToShare(GModel.ServerSeti…...

move与函数指针的简单使用
std::move() C11的标准库 提供了一个非常有用的函数 std::move(),std::move() 函数将一个左值强制转化为右值引用,以用于移动语义。 就是说 std::move(str); 之后原来的值因为变成了右值失效了 但是这样赋值可以避免出现拷贝 #include <iostream&g…...

第五章 树与二叉树 二、二叉树的定义和常考考点
一、定义 二叉树可以用以下方式详细定义: 二叉树是由节点构成的树形结构,每个节点最多可以有两个子节点。每个节点有以下几个属性: 值:存储该节点的数据。左子节点:有一个左子节点,如果没有则为空。右子节…...

算法笔记/USACO Guide GOLD金组DP 1. Introduction to DP
USACO Guide中金组的内容分为一下六个章节 DP数学图论数据结构树一些附加主题 今天学习DP,以下内容: 初入DP背包DP图表中的路线最长递增序列状态压缩DP区间DP数位DP 初入DP Dynamic Programming (DP) is an important algorithmic technique in Comp…...