Scikit-Learn中的特征选择和特征提取详解
概要
机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域,机器学习都被广泛地应用。在机器学习的过程中,我们需要从原始数据中提取出有用的特征,以便训练出好的模型。但是,如何选择最佳的特征是一个关键问题。在本文中,我们将探讨特征选择和特征提取两种方法,并讨论哪种方法更好。
什么是特征选择和特征提取?
在介绍特征选择和特征提取之前,我们需要先了解一下什么是特征。在机器学习中,特征是指原始数据中可以用来训练模型的属性或特性。例如,在一组数字中,我们可以将每个数字视为一个特征。在图像识别中,我们可以将图像的像素点视为特征。
特征选择和特征提取都是从原始数据中提取有用的特征的方法。特征选择是指从原始数据中选择最重要的特征,而特征提取是指从原始数据中提取新的特征,以便训练更好的模型。现在让我们来详细了解这两种方法。
特征选择
特征选择是从原始数据中选择最重要的特征,以便训练更好的模型。特征选择可以帮助我们降低模型的复杂度,提高模型的准确性。在特征选择中,我们通常会根据特征的重要性来选择最佳的特征。通常,特征的重要性是通过以下方法来计算的:
-
方差分析(ANOVA):用于比较不同特征之间的差异性。
-
互信息:用于衡量特征之间的依赖关系。
-
皮尔逊相关系数:用于衡量特征之间的线性相关性。
Scikit-Learn库提供了许多特征选择方法,例如方差选择、卡方检验、互信息等。以下是一个使用方差选择方法来选择最佳特征的示例代码:
from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold(threshold=0.01)
X_train = selector.fit_transform(X_train)
在上面的代码中,我们使用方差选择方法来选择方差大于0.01的特征。然后,我们使用fit_transform()方法来对训练数据进行特征选择。
特征提取
特征提取是从原始数据中提取新的特征,以便训练更好的模型。特征提取可以帮助我们发现原始数据中潜在的特征,并将其转换为更适合训练模型的形式。在特征提取中,我们通常会使用一些转换方法来提取新的特征。以下是一些常用的特征提取方法:
-
主成分分析(PCA):用于将高维数据转换为低维数据。
-
线性判别分析(LDA):用于将原始数据转换为新的低维数据,以便进行分类。
-
核方法:用于将原始数据转换为高维数据,以便更好地进行分类。
Scikit-Learn库提供了许多特征提取方法,例如PCA,LDA等。以下是一个使用PCA方法来提取新特征的示例代码:
from sklearn.decomposition import PCA
pca = PCA(n_components=2)X_train_pca = pca.fit_transform(X_train)
在上面的代码中,我们使用PCA方法将训练数据转换为两个新的特征。然后,我们使用fit_transform()方法来对训练数据进行特征提取。
特征选择和特征提取的优缺点
现在我们已经了解了特征选择和特征提取的方法,让我们来探讨一下它们的优缺点。
特征选择的优缺点
特征选择的优点是:
-
可以降低模型的复杂度,提高模型的准确性。
-
可以加快训练速度,减少过拟合的可能性。
-
可以提高模型的可解释性,帮助我们更好地理解模型。
特征选择的缺点是:
-
可能会丢失一些重要的信息,导致模型的准确性下降。
-
计算特征的重要性需要一定的时间和计算资源。
特征提取的优缺点
特征提取的优点是:
-
可以发现原始数据中潜在的特征,提高模型的准确性。
-
可以将高维数据转换为低维数据,减少计算资源的消耗。
-
可以帮助我们更好地理解原始数据和模型。
特征提取的缺点是:
-
可能会丢失一些重要的信息,导致模型的准确性下降。
-
特征提取的过程可能比较复杂,需要一定的时间和计算资源。
特征选择还是特征提取?
现在让我们来回答本文的主题问题:特征选择还是特征提取更好?
答案是:取决于具体的情况。
特征选择和特征提取都有各自的优缺点,我们需要根据具体的情况来选择最佳的方法。如果我们已经知道哪些特征对模型的准确性影响较大,那么特征选择可能是更好的选择。如果我们想要发现原始数据中潜在的特征,那么特征提取可能是更好的选择。
结论
在本文中,我们探讨了特征选择和特征提取两种方法,并讨论了它们的优缺点,我们需要根据具体的情况来选择最佳的方法。
相关文章:
Scikit-Learn中的特征选择和特征提取详解
概要 机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域,机器学习都被广泛地应用。在机器学习的过程中,我们需要从原始数据中提取出有用的特征,以便训练出好的模型。但是,如何选择最佳的特征是一个关键问…...
Python之动态规划
序言 最近在学习python语言,语言有通用性,此文记录复习动态规划并练习python语言。 动态规划(Dynamic Programming) 动态规划是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家…...
[ES]二基础 |
一、索引库操作 1、mapping属性 mapping是对索引库中文档的约束,常见的mapping属性包括: 1)type:字段数据类型,常见的简单类型有: ①字符串:text(可分词的文本)、keyword(精确值,…...
vscode vue3自定义自动补全
敲代码多了,发现重发动作很多,于是还是定义自动补全代码吧——懒是第一生产力! 1,Ctrl Shift P打开快捷命令行:找到下面这个 2,然后找到ts: 里面给了demo照着写就行 // "Print to conso…...
Spring Cloud + Spring Boot 项目搭建结构层次示例讲解
Spring Cloud Spring Boot 项目搭建结构层次示例讲解 Spring Cloud 项目搭建结构层次示例Spring Cloud示例: Spring Boot 项目搭建结构层次讲解Spring Boot 项目通常按照一种常见的架构模式组织,可以分为以下几个主要层次:当构建一个 Spring…...
使用cgroup工具对服务器某些/全部用户进行计算资源限制
使用cgroup工具对服务器某些/全部用户进行计算资源限制 主要介绍,如何对指定/所有用户进行资源限定(这里主要介绍cpu和内存占用限制),防止某些用户大量占用服务器计算资源,影响和挤占他人正常使用服务器。 安装cgrou…...
C#获取DataTable的前N行数据然后按指定字段排序
获取DataTable的前N行数据然后按指定字段排序 可以使用以下三种代码: 第一种:使用Linq DataTable dtLast dataTable.AsEnumerable().Take(count).OrderBy(dataRow > Convert.ToInt32(dataRow["Sequence"])).CopyToDataTable(); 第二种…...
Swift 中的动态成员查找
文章目录 前言基础介绍基础示例1. 定义一个动态成员访问类:2. 访问嵌套动态成员: 使用 KeyPath 的编译时安全性KeyPath 用法示例KeyPath 进阶使用示例1. 动态访问属性:2. 结合可选属性和 KeyPath:3. 动态 KeyPath 和字典ÿ…...
leetcode做题笔记102. 二叉树的层序遍历
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 思路一:递归 int** levelOrder(struct TreeNode* root, int* returnSize, int** returnColumnSizes){int** ans(int**)mal…...
python编写四画面同时播放swap视频
当代技术让我们能够创建各种有趣和实用的应用程序。在本篇博客中,我们将探索一个基于wxPython和OpenCV的四路视频播放器应用程序。这个应用程序可以同时播放四个视频文件,并将它们显示在一个GUI界面中。 C:\pythoncode\new\smetimeplaymp4.py 准备工作…...
用XSIBackup为VMware ESXi打造完美备份方案
文章目录 VMware ESXi 备份方案引言XSIBackup安装步骤1. XSIBackup软件安装2. SSH连接3. 定位到xsibackup目录4. 修改文件权限5. 安装cron查看crontab列表6. 配置备份任务结论VMware ESXi 备份方案 引言 数据就像是我们的生命线,一旦丢失,可能会带来无法挽回的损失。对于那…...
React 项目中引入msal验证以及部分报错处理
功能实现 如何在React 项目中引入msal身份验证, 微软在官网有提供文档支持,文档包含示例和具体使用的教程,地址如下: https://learn.microsoft.com/zh-cn/azure/active-directory/develop/tutorial-v2-nodejs-webapp-msal 照着文…...
Unity3D 2021 使用 SharpZipLib 遇到的安卓打包 I18N 相关问题
在 Unity3D 中,使用 ICSharpCode.SharpZipLib.dll 来做压缩和解压缩,但打包安卓后遇到问题,原因是字符编码程序集被裁减掉了导致。 根据网上搜索,将 UnityEditor 对应目录下的 I18N开头的,比如 I18N.CJK.dll 等系列文…...
软件工程(十五) 行为型设计模式(一)
1、责任链模式 简要说明 通过多个对象处理的请求,减少请求的发送者与接收者之间的耦合。将接受对象链接起来,在链中传递请求,直到有一个对象处理这个请求。 速记关键字 传递职责 类图如下 由类图可以比较容易的看出来,其实就是自己关联自己,形成了一个链,并且自己有…...
【校招VIP】前端算法考点之快慢指针题型
考点介绍: 链表是校招面试里手撕代码出现频度比较高的题型,三线和中小厂会考察简单的链表反转,大厂会进一步考察复杂度和双指针问题,比如中间元素、是否存在环等。 『前端算法考点之快慢指针题型』相关题目及解析内容可点击文章末…...
Docker基础入门:容器数据卷与Dockerfile构建镜像(发布)
Docker基础入门:容器数据卷与Dockerfile构建镜像(发布) 一、docker容器数据卷1.1、使用docker容器数据卷1.2、具名挂载、匿名挂载1.3、如何确定是具名挂载还是匿名挂载 二、使用dockerfile2.1 初识Dockerfile2.2 Dockerfile构建过程2.3 Docke…...
部署问题集合(二十一)从零开始搭建一台NAS服务器(Linux虚拟机)
前言 因工作需要,需要从零通过虚拟机搭建一台NAS服务器,以此记录下来 步骤 1、创建虚拟机 通过VMWare创建一台新虚拟机,虚拟机内存和磁盘自定义,不过建议尽量大一点 2、服务器端配置 查看是否安装有NFS服务:rpm …...
Git小白入门——了解分布式版本管理和安装
Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一) 什么是版本控制系统? 程序员开发过程中,对于每次开发对各种文件的修改、增加、删除,达到预期阶段的一个快照就叫做一个版本。 如果有一…...
芯科科技宣布推出下一代暨第三代无线开发平台,打造更智能、更高效的物联网
第三代平台中的人工智能/机器学习引擎可将性能提升100倍以上 Simplicity Studio 6软件开发工具包通过新的开发环境将开发人员带向第三代平台 中国,北京 - 2023年8月22日 – 致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商Silicon Labs&…...
无涯教程-Android - Intents/Filters
Android Intent 是要执行的操作的抽象描述。它可以与 startActivity 一起启动Activity,将 broadcastIntent 发送给任何BroadcastReceiver组件,并与 startService(Intent)或 bindService(Intent,ServiceConnection,int)与后台服务进…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
