当前位置: 首页 > news >正文

算法笔记:KD树

1 引入原因

  • K近邻算法需要在整个数据集中搜索和测试数据x最近的k个点,如果一一计算,然后再排序,开销过大
    • 引入KD树的作用就是对KNN搜索和排序的耗时进行改进

2 KD树

2.1 主体思路

  • 以空间换时间,利用训练样本集中的样本点,沿各维度依次对k维空间进行划分,建立二叉树
  • 利用分治思想提高算法搜索效率
  • 二分查找的算法复杂度是O(logN)O(logN),KD树的搜索效率与之接近(取决于所构造kd-tree是否接近平衡树)

  •  上图为为训练样本对空间的划分以及对应的kd树
  • 绿色实心五角星为测试样本,通过kd-tree的搜索算法,快速找到与其最近邻的3个训练样本点(空心五角星标注的点)

2.2 KD树的建立

2.2.1 以一个例子引入

  • 比如我有6个点:(2,3),(4,7),(5,4),(7,2),(8,1),(9,6)
  • 1) 数据有两个维度,分别计算x,y方向上数据的方差
    • x方向上的方差最大
    • ——>先沿着X轴方向进行split
    • 注:这一步也可以不要,因为KD树适用的问题大多是维度小于20的,所以按照维度顺序一个一个来也没有问题
  • 2)根据x轴方向的值2,5,9,4,8,7排序选出中位数为7
    • x≤7的和x >7的被分开了
  • 3) 被分开的左半区和右半区分别选出y轴方向的中位数(偶数选小的那个)
  • 4)左上方三个点再根据x轴分一刀(其他三个区域已经各只剩一个点了)
  • 最终得到的KD树

2.2.2 伪代码

def kd_tree_construct:input: x: 训练样本集dim: 当前节点的分割维度(子节点的分割维度=(dim+1)%样本的维度)output: node: 构造好的kd tree的根节点if 只有一个数据点:创建一个叶子结点node包含这一单一的点node.point = x[0]node.son1 = Nonenode.son2 = Nonereturn nodeelse:记dim维度上的中位点为x(对x中的数据按dim维排序,取中位点,偶数个则取较小的那个)记xl为左集合(dim维小于p点的所有点)记xr为右集合(dim维大于p点的所有点)创建带有两个孩子的node:node.point = pnode.son1  = fit_kd_tree(xl)node.son2  = fit_kd_tree(xr)return node

2.3 KD树上的最近邻查找

2.3.1 伪代码

def kd_tree_search:global:Q, 缓存k个最近邻点(初始时包含一个无穷远点)q, 与Q对应,保存Q中各点与测试点的距离input: k, 寻找k个最近邻t, 测试点node, 当前节点(一开始时根节点)dim, 当前节点的分割维度(子节点的分割维度=(dim+1)%数据点的维度)output: 无if distance(t, node.point) < max(q):将node.point添加到Q,并同步更新q若Q内超过k个近邻点,则移出与测试点距离最远的那个点,并同步更新qif t[dim]-max(q) < node.point[dim]:kd_tree_search(k,t,node.son1)if t[dim]+max(q) > node.point[dim]:kd_tree_search(k,t,node.son2)

2.3.1 以一个例子开始

2.3.1.1 例子1 

搜索(2.1,3.1)

记k=1

  • 第1步:将(7,2)加入Q中,maxq=5.02,更新Q
    • 2.1-5.02≤7
      • 搜索左儿子
      • 第2步:将(5.4)加入Q中,maxq=3.04,更新Q
        • 3.1-3.04≤4
          • 搜索下儿子
          • 第3步:将(2,3)加入Q中,maxq=0.1414,更新Q
            • 已经是叶子节点了,结束
        • 3.1-3.04≥4
          • 搜索上儿子
          • 第4步:将(4,7)加入Q中,maxq=4.338>0.1414,不更新Q,仍为0.1414
            • 已经是叶子节点了,结束
    • 2.1-5.02≥7
      • 搜索右儿子
      • 第5步,将(9,6)加入Q中,maxq=7.484>0.1414,不更新Q,仍为0.1414
      • 3.1+7.484>6
        • 搜索上儿子
        • 没有上儿子,结束
  • 算法结束,最近的点是(2,3),q=0.1414

2.3.1.2 例子2 回溯时改变最近邻点

假设我们要查询的点是2,4.5

同样记k=1

  • 第1步:将(7,2)加入Q中,maxq=5.59,更新Q
    • 2-5.59≤7
      • 搜索左儿子
      • 第2步:将(5.4)加入Q中,maxq=3.04,更新Q
        • 4.5-3.04≤4
          • 搜索下儿子
          • 第3步:将(2,3)加入Q中,maxq=1.5,更新Q
        • 4.5+3.04≥4
          • 搜索上儿子
          • 第4步:将(4,7)加入Q中,maxq=3.20>1.5,不更新Q,仍为1.5
    • 2+5.59 >7
      • 搜索右儿子
      • 第5步,将(9,6)加入Q中,maxq=7.16>1.5,不更新Q,仍为1.5
        • 4.5+7.16>6
          • 搜索上儿子
          • 没有上儿子,结束
  • 算法结束,最近的点是(2,3),距离为1.5

参考内容:KNN的核心算法kd-tree和ball-tree - 简书 (jianshu.com)

k-d tree算法 - J_Outsider - 博客园 (cnblogs.com)

相关文章:

算法笔记:KD树

1 引入原因 K近邻算法需要在整个数据集中搜索和测试数据x最近的k个点&#xff0c;如果一一计算&#xff0c;然后再排序&#xff0c;开销过大 引入KD树的作用就是对KNN搜索和排序的耗时进行改进 2 KD树 2.1 主体思路 以空间换时间&#xff0c;利用训练样本集中的样本点&…...

plumelog介绍与应用-一个简单易用的java分布式日志系统

官方文档&#xff1a;http://www.plumelog.com/zh-cn/docs/FASTSTART.html 简介 无代码入侵的分布式日志系统&#xff0c;基于log4j、log4j2、logback搜集日志&#xff0c;设置链路ID&#xff0c;方便查询关联日志基于elasticsearch作为查询引擎高吞吐&#xff0c;查询效率高全…...

百度网盘删除“我的应用数据”文件夹

百度网盘删除“我的应用数据”文件夹电脑端方法-2023.2.27成功 - 哔哩哔哩 (bilibili.com) 百度网盘怎样删除我的应用数据文件夹-手机端方法-2023.3.24日成功 - 哔哩哔哩 (bilibili.com)...

多店铺智能客服,助力店铺销量倍增

近年来电商发展得非常快速&#xff0c;市场竞争也是愈发激烈了。商家不仅需要提高产品和服务的质量&#xff0c;还要争取为自己获取更多的曝光&#xff0c;以此来分散运营的风险和降低经营的成本&#xff0c;所以越来越多的商家也开始转向多平台多店铺运营。但即使运营多个平台…...

会话跟踪技术

cookie 是通过在浏览器第一次请求服务器时&#xff0c;在响应中放入cookie&#xff0c;浏览器接收到cookie后保存在本地&#xff0c;之后每次请求服务器时都将cookie携带到请求头中&#xff0c;用来验证用户身份与状态等。 缺点&#xff1a; 移动端app没有cookiecookie保存在…...

递归算法学习——子集

目录 一&#xff0c;题目解析 二&#xff0c;例子 三&#xff0c;题目接口 四&#xff0c;解题思路以及代码 1.完全深度搜索 2.广度搜索加上深度优先搜索 五&#xff0c;相似题 1.题目 2.题目接口 3.解题代码 一&#xff0c;题目解析 给你一个整数数组 nums &#xff0c…...

学习笔记:ROS使用经验(ROS报错)

报错&#xff1a;进程崩溃 ] process has died [pid 734, exit code -5, cmd /root/catkin_ws/devel/lib/pose_graph/pose_graph __name:pose_graph __log:/root/.ros/log/31b0ae1c-3295-11ee-bda9-02429b5737dc/pose_graph-5.log]. log file: /root/.ros/log/31b0ae1c-3295-11…...

设计模式二十四:访问者模式(Visitor Pattern)

用于将数据结构与数据操作分离&#xff0c;使得可以在不修改数据结构的情况下&#xff0c;定义新的操作。访问者模式的核心思想是&#xff0c;将数据结构和操作进行解耦&#xff0c;从而使得新增操作时不必修改数据结构&#xff0c;只需添加新的访问者。主要目的是在不改变数据…...

使用gn+Ninja构建项目

使用下载编译好的gn和ninja报错 先下载了gn的源码[gn.googlesource.com/gn]&#xff0c;然后编译报错&#xff0c;就直接下载了了编译号的gn和Ninja&#xff0c;然后写了Helloworld应用的BUILD.gn&#xff0c;然后将"gn\examples\simple_build\build"拷贝至当前目录…...

VMware虚拟机连不上网络

固定ip地址 进入网络配置文件 cd /etc/sysconfig/network-scripts 打开文件 vi ifcfg-ens33 编辑 BOOTPROTO设置为static&#xff0c;有3个值&#xff08;decp、none、static&#xff09; BOOTPROTO"static" 打开网络 ONBOOT"yes" 固定ip IPADDR1…...

安防视频监控/视频集中存储/云存储平台EasyCVR平台无法取消共享通道该如何解决?

视频汇聚/视频云存储/集中存储/视频监控管理平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;实现视频资源的鉴权管理、按需调阅、全网分发、云存储、智能分析等&#xff0c;视频智能分析平台EasyCVR融合性强、开放度…...

算法通关村-----如何基于数组和链表实现栈

实现栈的基本方法 push(T t)元素入栈 T pop() 元素出栈 Tpeek() 查看栈顶元素 boolean isEmpty() 栈是否为空 基于数组实现栈 import java.util.Arrays;public class ArrayStack<T> {private Object[] stack;private int top;public ArrayStack() {this.stack new…...

day-05 TCP半关闭 ----- DNS ----- 套接字的选项

一、优雅的断开套接字连接 之前套接字的断开都是单方面的。 &#xff08;一&#xff09;基于TCP的半关闭 Linux的close函数和windows的closesocket函数意味着完全断开连接。完全断开不仅不能发送数据&#xff0c;从而也不能接收数据。在某些情况下&#xff0c;通信双方的某一方…...

区块链金融项目怎么做?

区块链技术的兴起引发了金融领域的变革&#xff0c;为金融行业带来了前所未有的机遇与挑战。在这个快速发展的领域中&#xff0c;如何在区块链金融领域做出卓越的表现&#xff1f;本文将从专业性和思考深度两个方面&#xff0c;探讨区块链金融的发展路径&#xff0c;并为读者提…...

Redis与数据库保持一致

参考链接 先更新数据库&#xff0c;再更新redis 存在漏洞&#xff0c;如果更新Redis失败&#xff0c;仍然会导致不一致 先删Redis&#xff0c;再更新数据库并同步数据到Redis 存在漏洞&#xff0c;多线程情况下,线程1删除redis后&#xff0c;还是有可能被其他线程读取旧的数据…...

idea中vue项目 npm安装插件后node modules中找不到

从硬盘中重新加载一下...

已知两地经纬度,计算两地直线距离

文章目录 1 原理公式2 代码实现2.1 JavaScript2.2 C2.3 Python2.4 MATLAB 1 原理公式 在地球上&#xff0c;计算两点之间的直线距离通常使用地理坐标系&#xff08;例如WGS84&#xff09;。计算两地直线距离的公式是根据经纬度之间的大圆距离&#xff08;Great Circle Distanc…...

我想开通期权?如何开通期权账户?

场内期权的合约由交易所统一标准化定制&#xff0c;大家面对的同一个合约对应的价格都是一致的&#xff0c;比较公开透明&#xff0c;期权开户当天不能交易的&#xff0c;期权开户需要满足20日日均50万及半年交易经验即可操作&#xff0c;下文科普我想开通期权&#xff1f;如何…...

ChatGPT对软件测试的影响

ChatGPT 是一个经过预训练的 AI 语言模型&#xff0c;可以通过聊天的方式回答问题&#xff0c;或者与人闲聊。它能处理的是文本类的信息&#xff0c;输出也只能是文字。它从我们输入的信息中获取上下文&#xff0c;结合它被训练的大模型&#xff0c;进行分析总结&#xff0c;给…...

minion在ubuntu上的搭建步骤

在Ubuntu上搭建MinIO可以按照以下步骤进行&#xff1a; 下载MinIO服务器二进制文件&#xff1a; 通过浏览器访问 https://min.io/download 或使用以下命令获取最新的MinIO二进制文件&#xff1a;wget https://dl.min.io/server/minio/release/linux-amd64/minio赋予二进制文件…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...