生成式AI颠覆传统数据库的十种方式
对于生成式AI的所有闪光点,这个新时代最大的转变可能深埋在软件堆栈中。AI算法正在不易觉察地改变一个又一个数据库。他们正在用复杂、自适应且看似更直观的AI新功能颠覆传统数据库。
与此同时,数据库制造商正在改变我们存储信息的方式,以便更好地与人工智能模型配合使用。以下是随着人工智能的普及,数据库正在适应和改进的10种方式。
1、向量和嵌入
人工智能开发人员喜欢将信息存储为长数字向量。过去,数据库将这些值存储为行,每个数字位于单独的列中。现在,一些数据库支持纯向量,因此无需将信息分解为行和列。相反,数据库将它们存储在一起。一些用于存储的向量有数百甚至数千个数字长。
此类向量通常与嵌入配对,嵌入是一种将复杂数据转换为单个数字列表的模式。设计嵌入仍然是一门艺术,并且通常依赖于对基础领域的了解。当嵌入设计良好时,数据库可以提供快速访问和复杂查询。
Pinecone,Vespa,Milvus,Margo和Weaviate等一些公司正在建立专门存储载体的新数据库。像PostgreSQL这样的数据库正在将向量添加到他们当前的工具中。
2、查询模型
向数据库添加向量带来的不仅仅是便利。新的查询函数不仅可以搜索完全匹配项。它们可以定位“最接近”的值,这有助于实现推荐引擎或异常检测等系统。将数据嵌入向量空间简化了涉及与仅几何距离的匹配和关联的棘手问题。
Pinecone,Vespa,Milvus,Margo和Weaviate等向量数据库提供向量查询。一些意想不到的工具,如Lucene或Solr,也提供了相似性匹配,可以用大块的非结构化文本提供类似的结果。
3、建议
新的基于向量的查询系统感觉比我们过去的日子更加神奇。旧查询将查找匹配项;这些新的人工智能数据库有时感觉更像是在阅读用户的思想。他们使用相似性搜索来查找“接近”的数据项,并且这些数据项通常与用户想要的内容非常匹配。这一切背后的数学可能就像在n维空间中找到距离一样简单,但不知何故,这足以提供意想不到的结果。这些算法长期以来一直作为完整的应用程序单独运行,但它们正在慢慢地被折叠到数据库中,在那里它们可以支持更好、更复杂的查询。
甲骨文只是针对这个市场的数据库的一个例子。Oracle长期以来一直提供各种模糊匹配和相似性搜索功能。现在,它直接提供为在线零售等行业定制的工具。
4、索引范例
过去,数据库构建简单的索引,支持按特定列进行更快的搜索。数据库管理员擅长使用联接和过滤子句精心设计查询,这些子句使用正确的索引运行得更快。现在,向量数据库旨在创建有效地跨越向量中所有值的索引。我们刚刚开始弄清楚寻找彼此“邻近”的向量的所有应用。
但这仅仅是个开始。当人工智能在数据库上训练时,它会有效地吸收其中的所有信息。现在,我们可以用简单的语言向AI发送查询,AI将以复杂和自适应的方式进行搜索。
5、数据分类
人工智能不仅仅是向数据库添加一些新结构。有时它会在数据本身内部添加新结构。一些数据可能会以一团糟的形式抵达,比如可能没有注释的图像或很久以前某人写的大块文本。人工智能算法开始清理混乱,过滤掉噪音,并对混乱的数据集施加秩序。他们会自动填写表格。他们可以对文本块的情感基调进行分类,或者猜测照片中人脸的态度。可以从图像中提取小细节,算法也可以学习检测模式。他们正在对数据进行分类,提取重要的详细信息,并创建定期、清晰描述的信息表格视图。
亚马逊网络服务提供各种数据分类服务,将SageMaker等人工智能工具与Aurora等数据库连接起来。
6、更好的性能
好的数据库处理数据存储的许多细节。过去,程序员需要花时间操心数据库使用的各种参数和模式,以使它们高效运行。建立数据库管理员的角色是为了处理这些任务。
这些更高级别的元任务现在正在自动化,通常是通过使用机器学习算法来理解查询模式和数据结构。他们能够监视服务器上的流量并制定计划以适应需求。他们可以实时适应并学会预测用户的需求。
甲骨文提供了最好的例子之一。过去,公司向管理数据库的数据库管理员支付高薪。现在,甲骨文称其数据库为自治数据库,因为它们配备了复杂的人工智能算法,可以即时调整性能。
7、更清晰的数据
运行一个好的数据库不仅需要保持软件运行,还需要确保数据尽可能干净且没有故障。AI通过搜索异常、标记它们,甚至可能建议更正来简化此工作负载。他们可能会找到客户姓名拼写错误的位置,然后通过搜索其余数据找到正确的拼写。他们还可以学习传入的数据格式并摄取数据以生成单个统一的语料库,其中所有名称、日期和其他详细信息都尽可能一致地呈现。
Microsoft的SQL Server是与数据质量服务紧密集成的数据库的一个示例,用于清理存在缺少字段或重复日期等问题的任何数据。
8、欺诈检测
创建更安全的数据存储是机器学习的特殊应用程序。有些人正在使用机器学习算法来寻找数据馈送中的异常情况,因为这些算法可以很好地表明欺诈。有人第一次深夜去自动取款机吗?这个人曾经在这个大陆上使用过信用卡吗?人工智能算法可以嗅出危险的行迹,并将数据库变成欺诈检测系统。
例如,Google的网络服务提供了多种选项,用于将欺诈检测集成到数据存储堆栈中。
9、更严格的安全性
一些组织正在内部应用这些算法。AI不只是试图针对使用模式优化数据库;他们还在寻找可能表明有人闯入的不寻常案例。远程用户并非每天都会请求整个表的完整副本。一个好的人工智能可以闻到一些腥味。
IBM的Guardium Security 是与数据存储层集成以控制访问和监视异常的工具的一个例子。
10、合并数据库和生成式AI
过去,人工智能与数据库是分开的。当需要训练模型时,数据将从数据库中提取,重新格式化,然后输入AI。新系统直接从现有数据训练模型。这可以为大型作业节省时间和精力,在这些工作中,仅移动数据可能需要数天或数周的时间。它还简化了DevOps团队的生活,使训练AI模型像发出一个命令一样简单。
甚至有人谈论完全替换数据库。他们不会将查询发送到关系数据库,而是直接将其发送到AI中,AI将神奇地回答任何格式的查询。谷歌提供Bard,微软正在推动ChatGPT。两者都是取代搜索引擎的有力竞争者。他们没有理由不能取代传统的数据库。
这种方法有其缺点。在某些情况下,人工智能会产生幻觉,并想出完全错误的答案。在其他情况下,他们可能会随心所欲地更改其输出的格式。
但是,当领域足够有限并且训练集深入完整时,人工智能可以提供令人满意的结果。而且它不需要定义表格结构并强迫用户编写在其中查找数据的查询。对于用户和创建者来说,使用生成式AI存储和搜索数据可以更加灵活。
11、多看看优秀的工具
太空电梯、MOSS、ChatGPT等,都预兆着2023年注定不会是平凡的一年。任何新的技术都值得推敲,我们应要有这种敏感性。
这几年隐约碰过低代码,目前比较热门,很多大厂都相继加入。
低代码平台概念:通过自动代码生成和可视化编程,只需要少量代码,即可快速搭建各种应用。
到底啥是低代码,在我看来就是拖拉拽,呼呼呼,一通操作,搞出一套能跑的系统,前端,后端,数据库,一把完成。当然这可能是最终目标。
链接:www.jnpfsoft.com/?csdn,如果你感兴趣,也体验一下。
JNPF的优势就在于它能生成前后台代码,提供了极大的灵活性,能够创建更复杂、定制化的应用。它的架构设计也让开发者无需担心底层技术细节,能够专注于应用逻辑和用户体验的开发。
相关文章:

生成式AI颠覆传统数据库的十种方式
对于生成式AI的所有闪光点,这个新时代最大的转变可能深埋在软件堆栈中。AI算法正在不易觉察地改变一个又一个数据库。他们正在用复杂、自适应且看似更直观的AI新功能颠覆传统数据库。 与此同时,数据库制造商正在改变我们存储信息的方式,以便…...

el-date-picker自定义只能选中当前月份和半年内月份等
需求:el-date-picker只能选中当前月期和当前月期往前半年,其他时间就禁用了不让选择了,因为没数据哈哈。当然也可以选择往前一年等。 一、效果 二、写个日期选择器 :picker-options:日期选项 value-format:选择后的格…...

Pyecharts教程(十一):使用Pyecharts绘制带有滑动数据缩放功能的K线图
Pyecharts教程(十一):使用Pyecharts绘制带有滑动数据缩放功能的K线图 作者:安静到无声 个人主页 目录 Pyecharts教程(十一):使用Pyecharts绘制带有滑动数据缩放功能的K线图前言步骤总结推荐专栏前言 K线图是金融市场分析中常见的图表类型之一,它能够直观地展示价格的变化…...

2023年高教社杯数学建模思路 - 案例:ID3-决策树分类算法
文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模…...

POJ 3273 Monthly Expense 二分
我们对每个月花费的最小花费进行二分,对于每一次二分的值mid,计算能花的月份数量,如果月份数量小于等于m,我们就不断的缩小mid,直到找到月份数量小于等于m 与 月份数量大于m的临界值,取最后一次满足条件的m…...

图论(基础)
知识: 顶点,边 | 权,度数 1.图的种类: 有向图 | 无向图 有环 | 无环 联通性 基础1:图的存储(主要是邻接矩阵和邻接表) 例一:B3643 图的存储 - 洛谷 | 计算机科学教育新生态 (…...

docker的运行原理
Docker 是一个开源的容器化技术,它能够让开发者将应用及其依赖打包到一个轻量级的、可移植的容器中,这个容器可以在几乎任何机器上一致地运行。要了解 Docker 的运行原理,我们首先要理解以下几个核心概念: 容器 (Container): 容器是一个轻量级的、独立的、可执行的软件包,…...

vue自定义键盘
<template><div class"mark" click"isOver"></div><div class"mycar"><div class"mycar_list"><div class"mycar_list_con"><p class"mycar_list_p">车牌号</p>…...

k8s 安装 kubernetes安装教程 虚拟机安装k8s centos7安装k8s kuberadmin安装k8s k8s工具安装 k8s安装前配置参数
k8s采用master, node1, node2 。三台虚拟机安装的一主两从,机器已提前安装好docker。下面是机器配置,k8s安装过程,以及出现的问题与解决方法 虚拟机全部采用静态ip, master 30机器, node1 31机器, node2 32机器 机器ip 192.168.164.30 # ma…...

2023年高教社杯数学建模思路 - 案例:感知机原理剖析及实现
文章目录 1 感知机的直观理解2 感知机的数学角度3 代码实现 4 建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法,其…...

OTFS-ISAC雷达部分最新进展(含matlab仿真+USRP验证)
OTFS基带参数设置 我将使用带宽为80MHz的OTFS波形进行设计,对应参数如下: matlab Tx仿真 Tx导频Tx功率密度谱 帧结构我使用的是经典嵌入导频帧结构,Tx信号波形的带宽从右图可以看出约为80Mhz USRP验证 测试环境 无人机位于1m处 Rx导频Rx…...

Cell | 超深度宏基因组!复原消失的肠道微生物
期刊:Cell IF:64.5 (Q1) 发表时间:2023.6 研究背景 不同的生活方式会影响微生物组组成,但目前微生物组的研究严重偏向于西方工业化人群,其中工业化人群的特点是微生物群多样性较低。为了理解工…...

Centos7 设置代理方法
针对上面变量的设置方法: 1、在/etc/profile文件 2、在~/.bashrc 3、在~/.zshrc 4、在/etc/profile.d/文件夹下新建一个文件xxx.sh 写入如下配置: export proxy"http://192.168.5.14:8118" export http_proxy$proxy export https_proxy$pro…...

Android versions (Android 版本)
Android versions (Android 版本) All Android releases https://developer.android.com/about/versions Android 1.0 G1 Android 1.5 Cupcake Android 1.6 Donut Android 2.0 Eclair Android 2.2 Froyo Android 2.3 Gingerbread Android 3.0 Honeycomb Android 4.0 Ic…...

LNMP 平台搭建(四十)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 搭建LNMP 一、安装Nginx 二、安装Mysql 三、安装PHP 四、部署应用 前言 LNMP平台指的是将Linux、Nginx、MySQL和PHP(或者其他的编程语言,如…...

pcie 6.0/7.0相对pcie 5.0的变化有哪些?
引言 话说,小编在CSDN博客跟客服机器人聊天,突然看到有个搜索热搜“pcie最全科普贴”。小编有点似曾相识呀,我就好奇点击了一下,没想到几年前写的帖子在CSDN又火了一把。 说到这里,顺带给自己打个广告哈~ …...

百度Apollo:自动驾驶技术的未来应用之路
文章目录 前言一、城市交通二、出行体验三、环境保护四、未来前景总结 前言 随着科技的不断进步,自动驾驶技术正逐渐成为现实,颠覆着我们的出行方式。作为中国领先的自动驾驶平台,百度Apollo以其卓越的技术和开放的合作精神,正在…...

C++之std::distance应用实例(一百八十八)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

中国建筑出版传媒许少辉八一新书乡村振兴战略下传统村落文化旅游设计日
中国建筑出版传媒许少辉八一新书乡村振兴战略下传统村落文化旅游设计日...

基于java Swing 和 mysql实现的购物管理系统(源码+数据库+说明文档+运行指导视频)
一、项目简介 本项目是一套基于java Swing 和 mysql实现的购物管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含:项目源码、项目文档、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过…...

2023.9 - java - static 关键字
static关键字主要和Java的内存管理有关。我们可以将static关键字与变量,方法,代码块一起使用。static关键字属于该类,而不是该类的实例。 static关键字可以修饰: 变量(也称为类变量)方法(也称…...

SpringCloud学习笔记(十二)_Zipkin全链路监控
Zipkin是SpringCloud官方推荐的一款分布式链路监控的组件,使用它我们可以得知每一个请求所经过的节点以及耗时等信息,并且它对代码无任何侵入,我们先来看一下Zipkin给我们提供的UI界面都是提供了哪些信息。 如何使用Zipkin 虽然在SpringBoot…...

Java 多线程系列Ⅱ(线程安全)
线程安全 一、线程不安全线程不安全的原因: 二、线程不安全案例与解决方案1、修改共享资源synchronized 使用synchronized 特性 2、内存可见性Java内存模型(JMM)内存可见性问题 3、指令重排列4、synchronized 和 volatile5、拓展知识…...

const用法详解
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、const用法详解二、使用步骤 1.引入库2.读入数据总结 前言 提示:这里可以添加本文要记录的大概内容: 例如:随着人工智能…...

【LeetCode75】第四十二题 删除二叉搜索数中的节点
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目给我们一棵二叉搜索树,给我们一个目标值,让我们删除节点值等于目标值的节点,并且删除之后需要保持…...

c++:QT day2 信号和槽
1.多态: 静态多态:函数的重载 动态多态:程序运行 多态的实现:父类的指针或引用,指向或初始化子类的对象,调用子类对父类重写的函数,进而展开子类的功能 2.虚函数:用virtua关键字修饰的函数是虚函…...

16 Linux之JavaEE定制篇-搭建JavaEE环境
16 Linux之JavaEE定制篇-搭建JavaEE环境 文章目录 16 Linux之JavaEE定制篇-搭建JavaEE环境16.1 概述16.2 安装JDK16.3 安装tomcat16.4 安装idea2020*16.5 安装mysql5.7 学习视频来自于B站【小白入门 通俗易懂】2021韩顺平 一周学会Linux。可能会用到的资料有如下所示࿰…...

AI人员打闹监测识别算法
AI人员打闹监测识别算法通过yolopython网络模型框架算法, AI人员打闹监测识别算法能够准确判断出是否有人员进行打闹行为,算法会立即发出预警信号。Yolo算法,其全称是You Only Look Once: Unified, Real-Time Object Detection,其…...

如何使用CRM系统进行精细化管理客户?
客户是企业的生命线,对客户进行精细化管理,是提高企业收益的关键。那么,如何进行客户管理?CRM系统可以实现精细化管理客户,提升客户的价值。下面我们就来详细说一说。 1、获取客户信息 Zoho CRM系统可以通过web表单、…...

20230829工作心得:如何把大List 切割为多个小List?
1 怎么看这个方法谁在调用它? 解决:按ctrl,然后点进去看。 idea里看方法的具体细节,和谁在调用这个方法,都可以通过按ctrl,然后单击查看。 2 请求的时候,如果时间yyyy-MM-dd HH:mm:ss在url里会…...