当前位置: 首页 > news >正文

阅读网站模板下载/关键词快速排名怎么做

阅读网站模板下载,关键词快速排名怎么做,商城系统 WordPress,官方推广工具全文链接:http://tecdat.cn/?p30605 应用关联规则、聚类方法等数据挖掘技术分析治疗的中药专利复方组方配伍规律(点击文末“阅读原文”获取完整代码数据)。 方法检索治疗中药专利复方,排除外用中药及中西药物合用的复方。最近我们…

全文链接:http://tecdat.cn/?p=30605

应用关联规则、聚类方法等数据挖掘技术分析治疗的中药专利复方组方配伍规律点击文末“阅读原文”获取完整代码数据)。

方法检索治疗中药专利复方,排除外用中药及中西药物合用的复方。最近我们被要求撰写关于用药规律的研究报告,包括一些图形和统计输出。对入选的中药专利复方进行术语规范化等处理,抽取信息、建立表,应用数据分析软件R对数据进行关联规则分析,应用网络分析软件进行聚类分析。

相关视频

查看数据

6f545ab02e4bcf8c8666d08b51d5a345.png

转换成二值矩阵数据

colnames(data) <- paste0("X",1:ncol(data))database <- NULL
for(i in 1:nrow(data)) {tmp <- integer(length(total_types))

73b93ceb53a38678ecc115b310cf8836.png

建立apriori

plot(all_rules, method = "graph")

ec91fbcfd4d4363900f376da1bfb619a.png


点击标题查阅往期内容

f5805bd567f5631f27f8067e4781fae3.jpeg

R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律

outside_default.png

左右滑动查看更多

outside_default.png

01

ff95e2b5d7799a055330f382e1747f33.png

02

5fc0f4b4f8b9f6277ac32fea1745bee3.png

03

e07414bd66d2606ac5f5dcfa7c07bc25.png

04

8c98f2acf76c4f7169db066c54b422ce.png

中药专利复方中药对的关联规则分析

药对是方剂配伍的基本形式,它反映了中药之间相辅相成、相反相成、同类相从等配伍关系。药对中的中药在组方配伍时具有在处方中同时出现的特点,因此在关联规则分析中,分析置信度较大且双向关联的规则即可得到药对。 7f8e6368fefb8caf7ac7a8af0dd1d077.png

根据置信度和支持度筛选强关联规则

21f7b7d7e6e176c6ed49c0fc5e1718bb.png

K-means均值网络聚类分析

抑郁症中药专利复方中药物之间形成了一个复杂的配伍关系网络,关联规则分析可以用来发现其中的药对及强关联规则,但随着支持度和置信度阈值参数的降低,关联规则大量涌现,使得其中的配伍规律变得难以分析,应用网络聚类方法可以有效地发现其中的配伍规律。

#聚类类别号
kmod$cluster

dfe3e655d1b5d9ab5876dfc5c6cb2310.png

查看每个类别中的强关联规则

d8aa97df0647215cbb34d67d99ce1ae7.png

聚类1

baec3ee0c824709348e9eda6e0591c72.png

聚类2

2d7336f247aad4f6211897f8c45855e2.png

配伍关系网络的聚类分析结果显示了抑郁症治疗中常用的中药“社团”,反映了复方中一些配伍关系相对密切、固定的中药联合,临床运用可以提高疗效。


95353e53dd46bedf03b897fbce7d5984.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言APRIORI关联规则、K-MEANS均值聚类数据挖掘中药专利复方治疗用药规律网络可视化》。

outside_default.png

outside_default.png

点击标题查阅往期内容

非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究

Python面板时间序列数据预测:格兰杰因果关系检验Granger causality test药品销售实例与可视化

R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律

用SPSS Modeler的Web复杂网络对所有腧穴进行关联规则分析

PYTHON在线零售数据关联规则挖掘APRIORI算法数据可视化

R语言关联规则模型(Apriori算法)挖掘杂货店的交易数据与交互可视化

R语言关联挖掘实例(购物篮分析)

python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析

基于R的FP树fp growth 关联数据挖掘技术在煤矿隐患管理

python关联规则学习:FP-Growth算法对药品进行“菜篮子”分析

通过Python中的Apriori算法进行关联规则挖掘

Python中的Apriori关联算法-市场购物篮分析

R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律

在R语言中轻松创建关联网络

python主题建模可视化LDA和T-SNE交互式可视化

R语言时间序列数据指数平滑法分析交互式动态可视化

用R语言制作交互式图表和地图

如何用r语言制作交互可视化报告图表

K-means和层次聚类分析癌细胞系微阵列数据和树状图可视化比较

KMEANS均值聚类和层次聚类:亚洲国家地区生活幸福质量异同可视化分析和选择最佳聚类数

PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较

有限混合模型聚类FMM、广义线性回归模型GLM混合应用分析威士忌市场和研究专利申请数据

R语言多维数据层次聚类散点图矩阵、配对图、平行坐标图、树状图可视化城市宏观经济指标数据

r语言有限正态混合模型EM算法的分层聚类、分类和密度估计及可视化

Python Monte Carlo K-Means聚类实战研究

R语言k-Shape时间序列聚类方法对股票价格时间序列聚类

R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

R语言谱聚类、K-MEANS聚类分析非线性环状数据比较

R语言实现k-means聚类优化的分层抽样(Stratified Sampling)分析各市镇的人口

R语言聚类有效性:确定最优聚类数分析IRIS鸢尾花数据和可视化

Python、R对小说进行文本挖掘和层次聚类可视化分析案例

R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集

R语言有限混合模型(FMM,finite mixture model)EM算法聚类分析间歇泉喷发时间

R语言用温度对城市层次聚类、kmean聚类、主成分分析和Voronoi图可视化

R语言k-Shape时间序列聚类方法对股票价格时间序列聚类

R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析

R语言复杂网络分析:聚类(社区检测)和可视化

R语言中的划分聚类模型

基于模型的聚类和R语言中的高斯混合模型

r语言聚类分析:k-means和层次聚类

SAS用K-Means 聚类最优k值的选取和分析

用R语言进行网站评论文本挖掘聚类

基于LDA主题模型聚类的商品评论文本挖掘

R语言鸢尾花iris数据集的层次聚类分析

R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

R语言聚类算法的应用实例

outside_default.png

outside_default.png

outside_default.png

相关文章:

R语言APRIORI关联规则、K-MEANS均值聚类分析中药专利复方治疗用药规律网络可视化...

全文链接&#xff1a;http://tecdat.cn/?p30605 应用关联规则、聚类方法等数据挖掘技术分析治疗的中药专利复方组方配伍规律&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 方法检索治疗中药专利复方&#xff0c;排除外用中药及中西药物合用的复方。最近我们…...

3. MySql 5.7安装方式

服务器ip数据库版本硬件要求10.1.1.31mysql-boost-5.7.31.tar.gz2G/40G,内存不够需要开swap空间10.1.1.32mysql-boost-5.7.31.tar.gz2G/40G关闭swap swapoff -a && sed -i ‘/ swap / s/^(.*)$/#\1/g’ /etc/fstab 安装依赖 yum -y install make cmake gcc gcc-c++ bis…...

Flink 如何定位反压节点?

分析&回答 Flink Web UI 自带的反压监控 —— 直接方式 Flink Web UI 的反压监控提供了 Subtask 级别的反压监控。监控的原理是通过Thread.getStackTrace() 采集在 TaskManager 上正在运行的所有线程&#xff0c;收集在缓冲区请求中阻塞的线程数&#xff08;意味着下游阻…...

LeetCode-1005-K次取反后最大化的数组和-贪心算法

题目描述&#xff1a; 给你一个整数数组 nums 和一个整数 k &#xff0c;按以下方法修改该数组&#xff1a; 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后&#xff0c;返回数组 可能的最大和 。 …...

Linux内核源码分析 (5)多处理器调度

Linux内核源码分析 (5)多处理器调度 文章目录 Linux内核源码分析 (5)多处理器调度注&#xff1a;本章节使用的内核版本为Linux 5.6.18一、 SMT和NUMA1、SMP (对称多处理器结构)2、NUMA &#xff08;非一致内存访问结构&#xff09; 二、多核调度三、调度域和调度组四、SMP调度详…...

华为云云服务器评测|华为云云耀云服务器L实例使用教学

文章目录 教学小故事 教学 华为云云耀云服务器L实例是一款提供高效、可靠、安全的基础设施服务的云服务器。下面是使用教学&#xff1a; 登录华为云官网。 测评产品链接&#xff1a;https://www.huaweicloud.com/product/hecs-light.html 进入云耀云服务器管理控制台&#xf…...

这个在线网站让你三分钟制作出一份精美简历

今天&#xff0c;我要向大家推荐一个神奇的在线工具网站&#xff0c;它能够提供免费简历模板、简历范文&#xff0c;支持在线编辑&#xff0c;并且一键下载为PDF。这个工具让你的简历制作变得轻松便捷&#xff01; 首先&#xff0c;这个网站的简历模板非常丰富多样。无论你是刚…...

Sql 函数传递参数 字符串拼接

使用场景 一个计算价格的函数&#xff0c;多个存储过程调用&#xff0c;因业务需求经常要新增参数&#xff0c;避免修改函数时程序执行存储过程报错&#xff0c;将多个参数拼接为一个字符串传递 -- 调用函数CalcuPrice(UnitPrice,CONCAT(MFQZC,MFQZC,&ItemNum,ItemNum,&am…...

java八股文面试[多线程]——两个线程交替打印1-100之间的数字

一份代码&#xff0c;两个线程&#xff0c;使用synchronize实现&#xff1a; 重写run()方法&#xff0c;将输出1到100之间整数的代码写到同步方法里。线程1进入到同步方法&#xff0c;输出一个整数后&#xff0c;阻塞并释放锁。线程2进入到同步方法&#xff0c;唤醒线程1&…...

gRPC之gRPC认证

1、gRPC认证 前面篇章的gRPC都是明文传输的&#xff0c;容易被篡改数据&#xff0c;本章将介绍如何为gRPC添加安全机制。 gRPC默认内置了两种认证方式&#xff1a; SSL/TLS认证方式 基于Token的认证方式 同时&#xff0c;gRPC提供了接口用于扩展自定义认证方式。 1.1 TLS…...

简易虚拟培训系统-UI控件的应用3

目录 Button组件的组成 Button组件方法1-在Button组件中设置OnClick()回调 Button组件方法2-在脚本中添加Button类的监听 上一篇使用了文件流读取硬盘数据并显示在Text组件中&#xff0c;本篇增加使用按钮来控制显示哪一篇文字信息。 Button组件的组成 1. 新建Button&#…...

语言模型(language model)

文章目录 引言1. 什么是语言模型2. 语言模型的主要用途2.1 言模型-语音识别2.2 语言模型-手写识别2.3 语言模型-输入法 3. 语言模型的分类4. N-gram语言模型4.1 N-gram语言模型-平滑方法4.2 ngram代码4.3 语言模型的评价指标4.4 两类语言模型的对比 5. 神经网络语言模型6. 语言…...

【3.Vue子组件调用父组件方法】

1.概述 使用组件建抛出事件的方式来调用父组件的方法&#xff0c;不直接用this.$parent.function的方法&#xff0c;当然这种方式是可以的。 2.代码实现 2.1 父组件代码 父组件写一个方法给子组件调用 // 设备点击事件// equipId:设备id// leftValue:left值// topValue:top…...

算法系列-876-求链表的中间节点

求链表中间节点&#xff0c;如果有两个中间节点取后面那个 链表定义 // lc codestart /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(…...

h5 ws 客户端 监听ws服务器广播的信息

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>AI智能写作</title><!-- Bootstrap CSS --><meta charset"utf-8"><meta name"viewport" content"widt…...

网络基础之重中之重

目录 IP协议 ​编辑 基本概念&#xff1a; 协议头格式&#xff1a; ​编辑 网段划分 DHCP &#xff1a; CIDR&#xff1a; 特殊的IP地址&#xff1a; IP地址的数量限制&#xff1a; 私有IP和公网IP 路由 路由的过程&#xff1a; 数据链路层 认识以太网&#x…...

HarmonyOS应用开发者-----基础认证试题及答案

HarmonyOS应用开发者基础认证试题及答案 试题会不定时刷新,本试题仅供大家学习参考 【判断题】 2.5/2.5 所有使用@Component修饰的自定义组件都支持onPageShow,onBackPress和onPageHide生命周期函数。 正确(True)错误(False) 回答正确【判断题】 2.5/2.5 在Column和Row容器组…...

C++:string并非以0作为结束符,c_str和data的返回却包含结束符0

C语言中使用char数组保存字符串时,是以字符为0或者\0作为字符串的结束符标志的。 所以一个char str[10]的数组只能合法的保存9个字符(因为最后还要加一个结束符)。 #include <cstring> #include <iostream>using namespace std;int main() {char str[10] ="…...

ChatGPT插件的优缺点

虽然西弗吉尼亚大学的研究人员看到了最新的官方ChatGPT插件——名为“代码解释器”&#xff08; Code Interpreter&#xff09;的教育应用潜力&#xff0c;但他们也发现&#xff0c;对于使用计算方法处理针对癌症和遗传疾病的定向治疗的生物数据的科学家来说&#xff0c;这款插…...

北京985学校,交叉学科考英一数三408

北京师范大学(B) 考研难度&#xff08;☆☆☆&#xff09; 内容&#xff1a;23考情概况&#xff08;拟录取和复试分析&#xff09;、院校概况、23专业目录、23复试详情、各专业考情分析、各科目考情分析。 正文1096字&#xff0c;预计阅读&#xff1a;3分钟 2023考情概况 北…...

ChatGPT 总结前端HTML, JS, Echarts都包含哪些内容

AIGC ChatGPT ,BI商业智能, 可视化Tableau, PowerBI, FineReport, 数据库Mysql Oracle, Office, Python ,ETL Excel 2021 实操,函数,图表,大屏可视化 案例实战 http://t.csdn.cn/zBytu...

企业架构LNMP学习笔记1

项目开发流程&#xff1a; 公司老板或者产品经理&#xff0c;根据市场调查&#xff0c;决定开发一整套互联网产品。 互动社交电商用户论坛&#xff08;BBS&#xff09; 产品决策 &#xff08;老板产品UI设计&#xff09; 业务实施、代码开发 程序开发人员 前端开发&#x…...

【位运算】leetcode371:两整数之和

一.题目描述 两整数之和 二.思路分析 题目要求我们实现两整数相加&#xff0c;但是不能使用加号&#xff0c;应该立马想到是用位运算来解决问题。之前说过&#xff0c;异或就是“无进位相加”&#xff0c;故本题可以先将两数异或&#xff0c;然后想办法让得到的结果进位即可。…...

【爬虫小知识】如何利用爬虫爬网页——python爬虫

前言 网络时代的到来&#xff0c;给我们提供了海量的信息资源&#xff0c;但是&#xff0c;想要获取这些信息&#xff0c;手动一个一个网页进行查找&#xff0c;无疑是一项繁琐且效率低下的工作。这时&#xff0c;爬虫技术的出现&#xff0c;为我们提供了一种高效的方式去获取…...

什么是跨域问题 ?Spring MVC 如何解决跨域问题 ?Spring Boot 如何解决跨域问题 ?

目录 1. 什么是跨域问题 &#xff1f; 2. Spring MVC 如何解决跨域问题 &#xff1f; 3. Spring Boot 如何解决跨域问题 &#xff1f; 1. 什么是跨域问题 &#xff1f; 跨域问题指的是不同站点之间&#xff0c;使用 ajax 无法相互调用的问题。 跨域问题的 3 种情况&#x…...

线性代数的学习和整理17:向量空间的基,自然基,基变换等(未完成)

目录 3 向量空间的基&#xff1a;矩阵的基础/轴 3.1 从颜色RGB说起 3.2 附属知识 3.3 什么样的向量可以做基&#xff1f; 3.4 基的分类 3.1.1 不同空间的基---向量组的数量可能不同 3.1.2 自然基 3.1.3 正交基 3.1.4 标准正交基 3.1.5 基和向量/矩阵 3.1.6 基变换 …...

Java中支持分库分表的框架/组件/中间件简介

文章目录 1 sharding-jdbc2 TSharding3 Atlas4 Cobar5 MyCAT6 TDDL7 Vitess 列举一些比较常见的&#xff0c;简单介绍一下&#xff1a; sharding-jdbc&#xff08;当当&#xff09; TSharding&#xff08;蘑菇街&#xff09; Atlas&#xff08;奇虎360&#xff09; Cobar&#…...

7.2 项目2 学生通讯录管理:文本文件增删改查(C 版本)(自顶向下设计+断点调试) (A)

C自学精简教程 目录(必读) 该作业是 作业 学生通讯录管理&#xff1a;文本文件增删改查&#xff08;C版本&#xff09; 的C 语言版本。 具体的作业题目描述&#xff0c;要求&#xff0c;可以参考 学生通讯录管理&#xff1a;文本文件增删改查&#xff08;C版本&#xff09;。…...

excel怎么设置任意选一个单元格纵横竖横都有颜色

有时excel表格内容过多的时候&#xff0c;我们通过excel设置任意选一个单元格纵横&#xff0c;竖横背景颜色&#xff0c;这样会更加具有辨识度。设置方式截图如下 设置成功后&#xff0c;预览的效果图...

期货-股票交易规则

交易时间 港股&#xff1a;9:00~9:20 集合竞价&#xff0c;9:3012:00&#xff0c;13:0016:00 持续交易&#xff0c;16:00~16:10 随机收市竞价沪股&#xff1a;9:00~9:25 集合竞价&#xff0c;9:3011:30&#xff0c;13:0015:00 持续交易&#xff0c;11:30~12:00 交易申报深股&a…...