pytorch深度学习实践
B站-刘二大人
参考-PyTorch 深度学习实践_错错莫的博客-CSDN博客
线性模型
import numpy as np
import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) ** 2# 穷举法
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):print("w=", w)l_sum = 0for x_val, y_val in zip(x_data, y_data):y_pred_val = forward(x_val)loss_val = loss(x_val, y_val)l_sum += loss_valprint('\t', x_val, y_val, y_pred_val, loss_val)print('MSE=', l_sum / 3)w_list.append(w)mse_list.append(l_sum / 3)plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
线性模型作业
import numpy as np
import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) ** 2# 穷举法
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):print("w=", w)l_sum = 0for x_val, y_val in zip(x_data, y_data):y_pred_val = forward(x_val)loss_val = loss(x_val, y_val)l_sum += loss_valprint('\t', x_val, y_val, y_pred_val, loss_val)print('MSE=', l_sum / 3)w_list.append(w)mse_list.append(l_sum / 3)plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
梯度下降
import matplotlib.pyplot as plt# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]# initial guess of weight
w = 1.0# define the model linear model y = w*x
def forward(x):return x * w# define the cost function MSE
def cost(xs, ys):cost = 0for x, y in zip(xs, ys):y_pred = forward(x)cost += (y_pred - y) ** 2return cost / len(xs)# define the gradient function gd
def gradient(xs, ys):grad = 0for x, y in zip(xs, ys):grad += 2 * x * (x * w - y)return grad / len(xs)epoch_list = []
cost_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):cost_val = cost(x_data, y_data)grad_val = gradient(x_data, y_data)w -= 0.01 * grad_val # 0.01 learning rateprint('epoch:', epoch, 'w=', w, 'loss=', cost_val)epoch_list.append(epoch)cost_list.append(cost_val)print('predict (after training)', 4, forward(4))plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()
随机梯度下降
import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]w = 1.0def forward(x):return x * w# calculate loss function
def loss(x, y):y_pred = forward(x)return (y_pred - y) ** 2# define the gradient function sgd
def gradient(x, y):return 2 * x * (x * w - y)epoch_list = []
loss_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):for x, y in zip(x_data, y_data):grad = gradient(x, y)w = w - 0.01 * grad # update weight by every grad of sample of training setprint("\tgrad:", x, y, grad)l = loss(x, y)print("progress:", epoch, "w=", w, "loss=", l)epoch_list.append(epoch)loss_list.append(l)print('predict (after training)', 4, forward(4))
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
pytorch线性回归
import torch
import matplotlib.pyplot as plt
import numpy as np# prepare dataset
# x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])# design model using class
"""
our model class should be inherit from nn.Module, which is base class for all neural network modules.
member methods __init__() and forward() have to be implemented
class nn.linear contain two member Tensors: weight and bias
class nn.Linear has implemented the magic method __call__(),which enable the instance of the class can
be called just like a function.Normally the forward() will be called
"""class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()# (1,1)是指输入x和输出y的特征维度,这里数据集中的x和y的特征都是1维的# 该线性层需要学习的参数是w和b 获取w/b的方式分别是~linear.weight/linear.biasself.linear = torch.nn.Linear(1, 1)def forward(self, x):y_pred = self.linear(x)return y_predmodel = LinearModel()# construct loss and optimizer
# criterion = torch.nn.MSELoss(size_average = False)
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # model.parameters()自动完成参数的初始化操作,这个地方我可能理解错了# training cycle forward, backward, update
for epoch in range(1000):y_pred = model(x_data) # forward:predictloss = criterion(y_pred, y_data) # forward: lossprint(epoch, loss.item())optimizer.zero_grad() # the grad computer by .backward() will be accumulated. so before backward, remember set the grad to zeroloss.backward() # backward: autograd,自动计算梯度optimizer.step() # update 参数,即更新w和b的值print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
logistic回归
import torch# import torch.nn.functional as F# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])# design model using class
class LogisticRegressionModel(torch.nn.Module):def __init__(self):super(LogisticRegressionModel, self).__init__()self.linear = torch.nn.Linear(1, 1)def forward(self, x):# y_pred = F.sigmoid(self.linear(x))y_pred = torch.sigmoid(self.linear(x))return y_predmodel = LogisticRegressionModel()# construct loss and optimizer
# 默认情况下,loss会基于element平均,如果size_average=False的话,loss会被累加。
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# training cycle forward, backward, update
for epoch in range(1000):y_pred = model(x_data)loss = criterion(y_pred, y_data)print(epoch, loss.item())optimizer.zero_grad()loss.backward()optimizer.step()print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
多特征输入
import numpy as np
import torch
import matplotlib.pyplot as plt# prepare dataset
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1]) # 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
y_data = torch.from_numpy(xy[:, [-1]]) # [-1] 最后得到的是个矩阵# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6) # 输入数据x的特征是8维,x有8个特征self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 1)self.sigmoid = torch.nn.Sigmoid() # 将其看作是网络的一层,而不是简单的函数使用def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x)) # y hatreturn xmodel = Model()# construct loss and optimizer
# criterion = torch.nn.BCELoss(size_average = True)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred, y_data)print(epoch, loss.item())epoch_list.append(epoch)loss_list.append(loss.item())optimizer.zero_grad()loss.backward()optimizer.step()plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
加载数据
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader# prepare datasetclass DiabetesDataset(Dataset):def __init__(self, filepath):xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)self.len = xy.shape[0] # shape(多少行,多少列)self.x_data = torch.from_numpy(xy[:, :-1])self.y_data = torch.from_numpy(xy[:, [-1]])def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lendataset = DiabetesDataset('diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0) # num_workers 多线程# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6)self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x))return xmodel = Model()# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# training cycle forward, backward, update
if __name__ == '__main__':for epoch in range(100):for i, data in enumerate(train_loader, 0): # train_loader 是先shuffle后mini_batchinputs, labels = datay_pred = model(inputs)loss = criterion(y_pred, labels)print(epoch, i, loss.item())optimizer.zero_grad()loss.backward()optimizer.step()
加载数据划分数据集
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split# 读取原始数据,并划分训练集和测试集
raw_data = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)# 将训练数据集进行批量处理
# prepare datasetclass DiabetesDataset(Dataset):def __init__(self, data, label):self.len = data.shape[0] # shape(多少行,多少列)self.x_data = torch.from_numpy(data)self.y_data = torch.from_numpy(label)def __getitem__(self, index):return self.x_data[index], self.y_data[index]def __len__(self):return self.lentrain_dataset = DiabetesDataset(Xtrain, Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=0) # num_workers 多线程# design model using classclass Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6)self.linear2 = torch.nn.Linear(6, 4)self.linear3 = torch.nn.Linear(4, 2)self.linear4 = torch.nn.Linear(2, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x))x = self.sigmoid(self.linear2(x))x = self.sigmoid(self.linear3(x))x = self.sigmoid(self.linear4(x))return xmodel = Model()# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# training cycle forward, backward, updatedef train(epoch):train_loss = 0.0count = 0for i, data in enumerate(train_loader, 0):inputs, labels = datay_pred = model(inputs)loss = criterion(y_pred, labels)optimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()count = iif epoch % 2000 == 1999:print("train loss:", train_loss / count, end=',')def test():with torch.no_grad():y_pred = model(Xtest)y_pred_label = torch.where(y_pred >= 0.5, torch.tensor([1.0]), torch.tensor([0.0]))acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0)print("test acc:", acc)if __name__ == '__main__':for epoch in range(10000):train(epoch)if epoch % 2000 == 1999:test()
多分类问题(softmax)
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using classclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.l1 = torch.nn.Linear(784, 512)self.l2 = torch.nn.Linear(512, 256)self.l3 = torch.nn.Linear(256, 128)self.l4 = torch.nn.Linear(128, 64)self.l5 = torch.nn.Linear(64, 10)def forward(self, x):x = x.view(-1, 784) # -1其实就是自动获取mini_batchx = F.relu(self.l1(x))x = F.relu(self.l2(x))x = F.relu(self.l3(x))x = F.relu(self.l4(x))return self.l5(x) # 最后一层不做激活,不进行非线性变换model = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):# 获得一个批次的数据和标签inputs, target = dataoptimizer.zero_grad()# 获得模型预测结果(64, 10)outputs = model(inputs)# 交叉熵代价函数outputs(64,10),target(64)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度total += labels.size(0)correct += (predicted == labels).sum().item() # 张量之间的比较运算print('accuracy on test set: %d %% ' % (100 * correct / total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()
卷积神经网络
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using classclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)self.pooling = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(320, 10)def forward(self, x):# flatten data from (n,1,28,28) to (n, 784)batch_size = x.size(0)x = F.relu(self.pooling(self.conv1(x)))x = F.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1) # -1 此处自动算出的是320x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100 * correct / total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()
卷积神经网络-GPU
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using classclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)self.pooling = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(320, 10)def forward(self, x):# flatten data from (n,1,28,28) to (n, 784)batch_size = x.size(0)x = F.relu(self.pooling(self.conv1(x)))x = F.relu(self.pooling(self.conv2(x)))x = x.view(batch_size, -1) # -1 此处自动算出的是320# print("x.shape",x.shape)x = self.fc(x)return xmodel = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = datainputs, target = inputs.to(device), target.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataimages, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100 * correct / total))return correct / totalif __name__ == '__main__':epoch_list = []acc_list = []for epoch in range(10):train(epoch)acc = test()epoch_list.append(epoch)acc_list.append(acc)plt.plot(epoch_list, acc_list)plt.ylabel('accuracy')plt.xlabel('epoch')plt.show()
Inception Moudel
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class InceptionA(nn.Module):def __init__(self, in_channels):super(InceptionA, self).__init__()self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch3x3 = self.branch3x3_3(branch3x3)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3, branch_pool]return torch.cat(outputs, dim=1) # b,c,w,h c对应的是dim=1class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(1408, 10)def forward(self, x):in_size = x.size(0)x = F.relu(self.mp(self.conv1(x)))x = self.incep1(x)x = F.relu(self.mp(self.conv2(x)))x = self.incep2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100 * correct / total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()
ResidualBlock
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class ResidualBlock(nn.Module):def __init__(self, channels):super(ResidualBlock, self).__init__()self.channels = channelsself.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)def forward(self, x):y = F.relu(self.conv1(x))y = self.conv2(y)return F.relu(x + y)class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 16, kernel_size=5)self.conv2 = nn.Conv2d(16, 32, kernel_size=5) # 88 = 24x3 + 16self.rblock1 = ResidualBlock(16)self.rblock2 = ResidualBlock(32)self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(512, 10) # 暂时不知道1408咋能自动出来的def forward(self, x):in_size = x.size(0)x = self.mp(F.relu(self.conv1(x)))x = self.rblock1(x)x = self.mp(F.relu(self.conv2(x)))x = self.rblock2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100 * correct / total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()
相关文章:

pytorch深度学习实践
B站-刘二大人 参考-PyTorch 深度学习实践_错错莫的博客-CSDN博客 线性模型 import numpy as np import matplotlib.pyplot as pltx_data [1.0, 2.0, 3.0] y_data [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred forward(x)return (y_pred - y) ** 2# …...

直方图反向投影(Histogram Backprojection)
直方图反向投影(Histogram Backprojection)是一种在计算机视觉中用于对象检测和图像分割的技术。它的原理基于图像的颜色分布,允许我们在一幅图像中找到与给定对象颜色分布相匹配的区域。这个技术常常用于图像中的目标跟踪、物体识别和图像分…...

day32 泛型 数据结构 List
一、泛型 概述 JDK1.5同时推出了两个和集合相关的特性:增强for循环,泛型 泛型可以修饰泛型类中的属性,方法返回值,方法参数, 构造函数的参数 Java提供的泛型类/接口 Collection, List, Set,Iterator 等 …...

DW-AHB Central DMAC
文章目录 AHB Central DMAC —— Design Ware AHB Central DMAC —— Design Ware AHB(Adavenced High-performace BUS) Central DMAC(Direct Memory Access Controller) : 一个高性能总线系统。 作用:在嵌入式系统种连接高速设备,如处理器内存&#x…...

JavaScript设计模式(四)——策略模式、代理模式、观察者模式
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...

JS画布的基本使用
直线 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title></title> <style> #myname{ border: 1px solid red; /* background: linear-gradient(to righ…...

c++ set/multiset
set/multiset 集合,一个单个,一个多个(multi)。两个库都是"set"。 https://blog.csdn.net/fckbb/article/details/130917681 对象创建 set(const Pred& compPred(),const A& alA()):创建空集合。set(const set& x):…...

多线程与高并发——并发编程(4)
文章目录 四、阻塞队列1 基础概念1.1 生产者消费者概念1.2 JUC阻塞队列的存取方法2 ArrayBlockingQueue2.1 ArrayBlockingQueue的基本使用2.2 生产者方法实现原理2.2.1 ArrayBlockingQueue的常见属性2.2.2 add方法2.2.3 offer方法2.2.4 offer(time,unit)方法2.2.5 put方法2.3 消…...

设计模式之建造者模式
文章目录 盖房项目需求传统方式解决盖房需求传统方式的问题分析建造者模式概述是建造者模式的四个角色建造者模式原理类图建造者模式的注意事项和细节 盖房项目需求 需要建房子:这一过程为打桩、砌墙、封顶房子有各种各样的,比如普通房,高楼…...

源码编译安装opencv4.6.0,别的版本也行
1.下载opencv4.6.0 系统: ubuntu 1804 64位点我下载opencv 4.6.0 https://codeload.github.com/opencv/opencv/zip/refs/tags/4.6.0 指令下载 推荐: wget -O opencv.zip https://github.com/opencv/opencv/archive/4.6.0.zip wget -O opencv_contrib.zip https://github.com/…...

【MongoDB】Springboot中MongoDB简单使用
1. docker安装MongoDB 拉取镜像 docker pull mongo创建容器 docker run -di --name mongo-service --restartalways -p 27017:27017 -v ~/data/mongodata:/data mongo2. 导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactI…...

Python 面试:单元测试unit testing 使用pytest
1. 对于函数进行单元测试 calc.py def add(x, y):"""Add Function"""return x ydef subtract(x, y):"""Subtract Function"""return x - ydef multiply(x, y):"""Multiply Function""…...

螺旋矩阵、旋转矩阵、矩阵Z字打印
螺旋矩阵 #include <iostream> #include <vector> void display(std::vector<std::vector<int>>&nums){for(int i 0; i < nums.size(); i){for(int j 0; j < nums[0].size(); j){std::cout<<nums[i][j]<< ;}std::cout<<…...

Seaborn绘制热力图的子图
Seaborn绘制热力图的子图 提示:如何绘制三张子图 绘制的时候,会出现如下问题 (1)如何绘制1*3的子图 (2)三个显示条,如何只显示最后一个 提示:下面就展示详细步骤 Seaborn绘制热力…...

C++二级题目4
小白鼠再排队 不会 多余的数 #include<iostream> #include<string.h> #include<stdio.h> #include<iomanip> #include<cmath> #include<bits/stdc.h> int a[2000][2000]; int b[2000]; char c[2000]; long long n; using namespace std; i…...

Tomcat 部署时 war 和 war exploded区别
在 Tomcat 调试部署的时候,我们通常会看到有下面 2 个选项。 是选择war还是war exploded 这里首先看一下他们两个的区别: war 模式:将WEB工程以包的形式上传到服务器 ;war exploded 模式:将WEB工程以当前文件夹的位置…...

Delphi IdTcpServer IdTcpClient 传输简单文本
Delphi IdTcpServer IdTcpClient 传输简单文本 已经很久敲代码了,想找一段直接Delphi11 TCP简单文本传输,费劲!FStringStream 、FStrStream : FStringStream:TStringStream.Create(,TEncoding.UTF8); 已经很久敲代码了,…...

界面控件Telerik UI for WPF——Windows 11主题精简模式提升应用体验
Telerik UI for WPF拥有超过100个控件来创建美观、高性能的桌面应用程序,同时还能快速构建企业级办公WPF应用程序。Telerik UI for WPF支持MVVM、触摸等,创建的应用程序可靠且结构良好,非常容易维护,其直观的API将无缝地集成Visua…...

PoseC3D 基于人体姿态的动作识别新范式
摘要1. Introduction2. Related Work动作识别 3D-CNN基于骨架的动作识别 GCN基于骨骼的动作识别 2D-CNN3. Framework3.1. Good Practice for Pose Extraction3.2. From 2D Poses to 3D Heatmap Volumes3.3 基于骨骼的动作识别 3D-CNNPose-SlowOnlyRGBPose-SlowFast4. Experimen…...

html2canvas 截图空白 或出现toDataURL‘ on ‘HTMLCanvasElement或img标签没截下来 的所有解决办法
1.如果截图空白: 1.1以下的参数是必须要有的。 width: shareContent.offsetWidth, //设置canvas尺寸与所截图尺寸相同,防止白边height: shareContent.offsetHeight, //防止白边logging: true,useCORS: true,x:0,y:0,2,如果出现了报错 toData…...

Eclipse错误提示: Symbol ‘xxxx‘ could not be resolved
问题现象: 调试FPGA时,如果在qsys中增加新的内容,到nios中编译的时候就会提示找不到宏定义。 而这些宏定义都是在system.h这个头文件中的,原来的宏定义都能找到,就是新增的找不到,这个应该和头文件路径没有…...

基于Java的OA办公管理系统,Spring Boot框架,vue技术,mysql数据库,前台+后台,完美运行,有一万一千字论文。
基于Java的OA办公管理系统,Spring Boot框架,vue技术,mysql数据库,前台后台,完美运行,有一万一千字论文。 系统中的功能模块主要是实现管理员和员工的管理; 管理员:个人中心、普通员工…...

正则表达式(JAVA)
正则表达式(JAVA) 文章目录 正则表达式(JAVA)用法字符类(只匹配一个字符)预定义字符(只匹配一个字符)数量词贪婪爬取符号捕获分组规则捕获分组符号 非捕获分组案例忽略大小写 用法 正则表达式在用于校验信息是否满足某些规则的时候,非常的好用 在文本中查找满足要求的内容 字…...

264_BOOST中的Json库解析_BOOST_AUTO(itrpromodel, doc.FindMember(“productmodel“));
BOOST_AUTO(itrpromodel, doc.FindMember("productmodel"));if(itrpromodel != doc.MemberEnd()){BOOST_AUTO(iterd_url...

linux rpm 离线安装 nginx 自用,仅供参考
检查是否安装nginx ps -ef|grep nginx 检查rpm是否安装nginx rpm -qa|grep nginx 查看linux centos 发行版本 cat /etc/centos-release (查看其它发现版本 就把centos替换为别的 比如 红旗的 redflag ) 查看cpu信息 x86_64 lscpu 检查nginx所需依赖 …...

第十二章 YOLO的部署实战篇(上篇)
cuda教程目录 第一章 指针篇 第二章 CUDA原理篇 第三章 CUDA编译器环境配置篇 第四章 kernel函数基础篇 第五章 kernel索引(index)篇 第六章 kenel矩阵计算实战篇 第七章 kenel实战强化篇 第八章 CUDA内存应用与性能优化篇 第九章 CUDA原子(atomic)实战篇 第十章 CUDA流(strea…...

无涯教程-Android - List View函数
Android ListView 是垂直滚动列表中显示的视图,使用 Adapter 从列表(如数组或数据库)中获取内容的列表项会自动插入列表中。 适配器(Adapter)实际上是UI组件和将数据填充到UI组件中的数据源之间的桥梁,适配器保存数据并将数据发送到适配器视图࿰…...

stable diffusion实践操作-重绘
系列文章目录 本文专门开一节写局部重绘相关的内容,在看之前,可以同步关注: stable diffusion实践操作 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、局…...

C# 静态构造函数未执行 .net core框架
代码如下,在执行Encoding.GetEncoding(“gb2312”);方法后报错,说没有找到对应编码,经测试,发现是静态构造函数未执行。 public static class Encodings {/// <summary>/// 注册相关编码/// </summary>static Encodi…...

Java 复习笔记 - 学生管理系统篇
文章目录 学生管理系统一,需求部分需求分析初始菜单学生类添加功能删除功能修改功能查询功能 二,实现部分(一)初始化主界面(二)编写学生类(三)编写添加学生方法(四&#…...