当前位置: 首页 > news >正文

数学建模--层次分析法(AHP)的Python实现

目录

1.算法流程简介

2.算法核心代码

3.算法效果展示

1.算法流程简介

"""
AHP:层次分析法,层次分析法还是比较偏向于主观的判断的,所以在建模的时候尽可能不要去使用层次分析法
不过在某些创新的评价方法上,也是能够运用层次分析使得评价变得全面一些,有可能险中求胜,获得评委的青睐的
"""
具体流程如下:
#1.首先进行预备信息的求解便于一致性检验
#2.进行一致性检验,判断是否可以使用层次分析法
#3.求解权重的三种方法(算术平均值法,几何平均值法,特征向量法)

2.算法核心代码

"""
AHP:层次分析法,层次分析法还是比较偏向于主观的判断的,所以在建模的时候尽可能不要去使用层次分析法
不过在某些创新的评价方法上,也是能够运用层次分析使得评价变得全面一些,有可能险中求胜,获得评委的青睐的
"""
import numpy as np
class AHP:
#1.首先进行预备信息的求解便于一致性检验def __init__(self,cmatrix):self.arr=cmatrix#导入比较矩阵#获取比较矩阵的相关数据self.n=cmatrix.shape[0]#比较矩阵的大小#设置RI便于一致性检验self.RI= [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58,1.59]#求解特征值和特征向量np.linalg.eig()会一起返回self.eig_val, self.eig_vector = np.linalg.eig(self.arr)#求解矩阵的最大特征值self.max_eig_val = np.max(self.eig_val)#矩阵最大特征值对应的特征向量self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real#矩阵的一致性指标CIself.CI_val = (self.max_eig_val - self.n) / (self.n - 1)#矩阵的一致性比例CRself.CR_val = self.CI_val / (self.RI[self.n - 1])
#2.进行一致性检验,判断是否可以使用层次分析法def consist_test(self):#一致性指标CIprint("比较矩阵的CI值为:",str(self.CI_val))#一致性指标CRprint("比较矩阵的CR值为:",str(self.CR_val))if self.n==2:print("仅有两个子因素,不存在一致性冲突问题")else:if self.CR_val<0.1:#CR<0.1,一致性问题通过print("比较矩阵CR值为:",str(self.CR_val),"<0.1,通过一致性检验!")return Trueelse:print("比较矩阵CR值为:",str(self.CR_val),">0.1,未通过一致性检验,不能使用层次分析法!")return False
#3.求解权重的三种方法:
#1.算术平均法def Arithmetic_averaging_method(self):#求每一列的和sum_col=np.sum(self.arr,axis=0)#归一化处理array_std=self.arr/sum_col#计算权重向量weight_Arithmetic_averaging=np.sum(array_std,axis=1)/self.nprint("算术平均法求得的权重为:",weight_Arithmetic_averaging)return weight_Arithmetic_averaging#2.几何平均法def Geometric_averaging_method(self):# 求矩阵的每列的积col_plus = np.product(self.arr, axis=0)# 将得到的积向量的每个分量进行开n次方array_power = np.power(col_plus, 1 / self.n)# 将列向量归一化weight_Geometric_averaging = array_power / np.sum(array_power)# 打印权重向量print("几何平均法求得的权重为:", weight_Geometric_averaging)# 返回权重向量的值return weight_Geometric_averaging#3.特征值权重法def Eigenvalue_weighting_method(self):# 将矩阵最大特征值对应的特征向量进行归一化处理就得到了权重weight_Eigenvalue_weighting = self.max_eig_vector / np.sum(self.max_eig_vector)# 打印权重向量print("特征值权重法法求得的权重为:", weight_Eigenvalue_weighting)# 返回权重向量的值return weight_Eigenvalue_weightingdef test_run_demo():#comparsion_matrix可以随意修改comparsion_matrix=np.array([[1,1/4,1/9],[4,1,1/2],[9, 2, 1]])weight1 = AHP(comparsion_matrix).Arithmetic_averaging_method()weight2 = AHP(comparsion_matrix).Geometric_averaging_method()weight3 = AHP(comparsion_matrix).Eigenvalue_weighting_method()#运行区域:
test_run_demo()

3.算法效果展示

算术平均法求得的权重为: [0.07243906 0.30125047 0.62631047]
几何平均法求得的权重为: [0.7374984  0.17727613 0.08522547]
特征值权重法法求得的权重为: [0.07239208 0.30116321 0.62644471]

相关文章:

数学建模--层次分析法(AHP)的Python实现

目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 """ AHP:层次分析法,层次分析法还是比较偏向于主观的判断的,所以在建模的时候尽可能不要去使用层次分析法 不过在某些创新的评价方法上,也是能够运用层次分析使得评价变得全面一些,有可…...

机器学习笔记之最优化理论与方法(三)凸集的简单认识(下)

机器学习笔记之最优化理论与方法——凸集的简单认识[下] 引言回顾&#xff1a;基本定义——凸集关于保持集合凸性的运算仿射变换 凸集基本性质&#xff1a;投影定理点与凸集的分离支撑超平面定理 引言 继续凸集的简单认识(上)进行介绍&#xff0c;本节将介绍凸集的基本性质以及…...

Apipost:API文档、调试、Mock与测试的一体化协作平台

随着数字化转型的加速&#xff0c;API&#xff08;应用程序接口&#xff09;已经成为企业间沟通和数据交换的关键。而在API开发和管理过程中&#xff0c;API文档、调试、Mock和测试的协作显得尤为重要。Apipost正是这样一款一体化协作平台&#xff0c;旨在解决这些问题&#xf…...

Homebrew下载安装及使用教程

Homebrew是什么&#xff1f; 简单来说&#xff0c;就是用命令行的形式去管理mac系统的包或软件。 安装命令 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"国内请使用镜像源进行下载 执行上述命令后会要求输入…...

【Codeforces】CF193D Two Segments

题目链接 CF方向 Luogu方向 题目解法 考虑在值域上的问题&#xff1a;有多少段区间&#xff0c;对应在排列上不超过 2 2 2 段 肯定需要枚举一个端点&#xff0c;另一个快速算出&#xff0c;考虑枚举值域区间右端点 r r r&#xff0c;计算 l l l 可以发现&#xff0c;新增…...

内存管理概述

前言 在学习计算机科学时&#xff0c;内存管理是一个非常重要的概念。简单地说&#xff0c;内存是计算机用来存储和访问数据的地方。而内存管理是计算机系统如何分配、使用和管理内存的过程。 为什么要学习内存管理&#xff1f; 1. 高效性&#xff1a;内存管理能够帮助计算机更…...

Spring的重试机制-SpringRetry

在我们的日常开发中&#xff0c;经查会遇到调用接口失败的情况&#xff0c;这时候就需要通过一些方法来进行重试&#xff0c;比如通过while循环手动重复调用或&#xff0c;或者通过记录错误接口url和参数到数据库&#xff0c;然后手动调用接口&#xff0c;或者通过JDK/CGLib动态…...

水稻叶病害数据集(目标检测,yolo使用)

1.数据集文件夹 train文件夹&#xff08;44229张&#xff09;&#xff0c;test文件夹&#xff08;4741张&#xff09;&#xff0c;valid文件夹&#xff08;6000张&#xff09; 2.train文件夹展示 labels展示 标签txt展示 data.yaml文件展示 对数据集感兴趣的可以关注最后一行…...

鸿蒙系列-如何使用好 ArkUI 的 @Reusable?

如何使用好 ArkUI 的 Reusable&#xff1f; OpenHarmony 组件复用机制 在ArkUI中&#xff0c;UI显示的内容均为组件&#xff0c;由框架直接提供的称为 系统组件&#xff0c;由开发者定义的称为 自定义组件。 在进行 UI 界面开发时&#xff0c;通常不是简单的将系统组件进行组合…...

展锐平台音频框架

Audio DT介绍 1.概述 DT&#xff08;Device Tree&#xff09;是一种描述硬件的数据结构&#xff0c;DTS即设备树源码。 2.Audio DTS 文件架构 \bsp\kernel\kernel.4.14\arch\arm64\boot\sprd ums512.dts //SOC级相关节点 ——sc2730.dtsi //Codec ——sharkl5Pro.dts…...

webpack loader和plugins的区别

在Webpack中&#xff0c;Loader和Plugin是两个不同的概念&#xff0c;用于不同的目的。 Loader是用于处理非JavaScript模块的文件的转换工具。它们将文件作为输入&#xff0c;并将其转换为Webpack可以处理的模块。例如&#xff0c;当您在Webpack配置中使用Babel Loader时&…...

适配器模式:接口的平滑过渡

欢迎来到设计模式系列的第七篇文章&#xff01;在前面的几篇文章中&#xff0c;我们已经学习了一些常见的设计模式&#xff0c;今天我们将继续探讨另一个重要的设计模式——适配器模式。 适配器模式简介 适配器模式是一种结构型设计模式&#xff0c;它主要用于将一个类的接口…...

vscode搭建springboot开发环境

前言 idea好用到但是收money&#xff0c;eclipse免费但是界面有点丑&#xff0c;所以尝试使用vscode开发springboot 提前准备 安装jdk&#xff0c;jdk需要大于11 安装vscode 安装maven 安装插件 主要是下面的插件 Extension Pack for JavaSpring Boot Extension PackDepe…...

SpringMVC-学习笔记

文章目录 1.概述1.1 SpringMVC快速入门 2. 请求2.1 加载控制2.2 请求的映射路径2.3 get和post请求发送2.4 五种请求参数种类2.5 传递JSON数据2.6 日期类型参数传递 3.响应3.1 响应格式 4.REST风格4.1 介绍4.2 RESTful快速入门4.3 简化操作 1.概述 SpringMVC是一个基于Java的Web…...

【STM32】学习笔记(TIM定时器)

TIM&#xff08;Timer&#xff09;定时器 定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元&#xff0c;在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能&#xff0c;而且…...

Jdk8 动态编译 Java 源码为 Class 文件(三)

Jdk8 动态编译 Java 源码为 Class 文件 一.JDK版本二.工程介绍1.依赖2.启动类3.配置类&#xff08;用于测试依赖注入&#xff09;4.工具类1.Java 源码文件读取类2.SpringBoot 容器实例管理类 5.测试类1.抽象类2.接口类3.默认抽象实现4.默认接口实现 6.接口类1.测试接口2.类重载…...

Shell自动化日志维护脚本

简介&#xff1a; 系统日志对于了解操作系统的运行状况、故障排除和性能分析至关重要。然而&#xff0c;长期积累的日志文件可能变得庞大&#xff0c;影响系统性能。在这篇文章中&#xff0c;我们将介绍一个自动化的解决方案&#xff0c;使用 Bash 脚本来监控和维护系统日志文件…...

设计模式入门笔记

1 设计模式简介 在IT这个行业&#xff0c;技术日新月异&#xff0c;可能你今年刚弄懂一个编程框架&#xff0c;明年它就不流行了。 然而即使在易变的IT世界也有很多几乎不变的知识&#xff0c;他们晦涩而重要&#xff0c;默默的将程序员划分为卓越与平庸两类。比如说&#xff…...

存储成本降低85%,携程历史库场景的降本实践

携程&#xff0c;一家中国领先的在线票务服务公司&#xff0c;从 1999 年创立至今&#xff0c;数据库系统历经三次替换。在移动互联网时代&#xff0c;面对云计算卷积而来的海量数据&#xff0c;携程通过新的数据库方案实现存储成本降低 85% 左右&#xff0c;性能提升数倍。本文…...

如何精确掌握函数防抖和函数节流的使用?

前序 函数防抖&#xff08;Debouncing&#xff09;和函数节流&#xff08;Throttling&#xff09;都是用于控制函数执行频率的技术&#xff0c;通常在处理高频率触发的事件&#xff08;如窗口滚动、鼠标移动、输入框输入等&#xff09;时非常有用 一、核心概念 函数防抖 函…...

【Linux系列】离线安装openjdk17的rpm包

首发博客地址 首发博客地址[1] 系列文章地址[2] 视频地址[3] 准备 RPM 包 请从官网下载&#xff1a;https://www.oracle.com/java/technologies/downloads/#java17[4] 如需不限速下载&#xff0c;请关注【程序员朱永胜】并回复 1020 获取。 安装 yum localinstall jdk-17_linux…...

Python 没有 pip 包问题解决

最近需要搞一个干净的Python,从官网上直接下载解压可用的绿色版&#xff0c;发现无法正常使用PiP 一 官网下载Python https://www.python.org/downloads/ 选择 embeddable package,这种是免安装的包&#xff0c;解压后可以直接使用。 二 配置环境变量 添加环境变量&#xff1a…...

并发-Java中的锁(二)--- 重入锁ReentrantLock,公平锁,非公平锁笔记

重入锁ReentrantLock 支持重进入的锁&#xff0c;表示该锁能够支持一个线程对资源的重复加锁该锁支持获取锁时的公平和非公平的选择 如果在绝对时间上&#xff0c;先对锁进行获取的请求一定先被满足&#xff0c;那么锁是公平的&#xff0c;获取锁是顺序的。 实现重进入 线程再…...

LeetCode每日一题:1921. 消灭怪物的最大数量(2023.9.3 C++)

目录 1921. 消灭怪物的最大数量 题目描述&#xff1a; 实现代码与解析&#xff1a; 贪心 原理思路&#xff1a; 1921. 消灭怪物的最大数量 题目描述&#xff1a; 你正在玩一款电子游戏&#xff0c;在游戏中你需要保护城市免受怪物侵袭。给你一个 下标从 0 开始 且长度为 …...

SpringBoot连接MySQL数据库,使用Mybatis框架(入门)

1. 说明 SpringBoot项目&#xff0c;连接MySQL数据库&#xff0c;使用Mybatis框架。 本篇文章作为 SpringBoot 使用 Mybatis 的入门。 2. 依赖 2.1. MySQL驱动依赖 MySQL驱动&#xff0c;使用SpringBoot版本对应的默认版本&#xff0c;不需要手动指定版本。 比如&#xf…...

滑动窗口实例6(找到字符串中所有字母异位词)

题目&#xff1a; 给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串&#xff08;包括相同的字符串&#xff09;。 示例 1: 输入: s "cbaebabac…...

武林新秀(一)`git init` 初始化一个新的Git仓库

文章目录 命令的概述和用途命令的用法命令行选项和参数的详细说明命令的示例命令的注意事项或提示 命令的概述和用途 git init 是 Git 版本控制系统中用于初始化一个新的 Git 仓库或重新初始化一个现有的仓库的命令。“init” 是 “initialize”&#xff08;初始化&#xff09…...

gRPC之Interceptor

1、gRPC Interceptor 在应用开发过程中会有这样的需求&#xff0c;就是在请求执行前后做一些通用的处理逻辑&#xff0c;比如记录日志、tracing、身份 认证等&#xff0c;在web框架中一般是使用middleware来实现的&#xff0c;gRPC 在客户端和服务端都支持了拦截器功能&#…...

计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录 0 简介1 二维码检测2 算法实现流程3 特征提取4 特征分类5 后处理6 代码实现5 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖&#xff0c;适合作为竞赛课…...

ELK安装、部署、调试 (七)kibana的安装与配置

1.介绍 Kibana 是一个基于浏览器的开源可视化工具&#xff0c;主要用于分析大量日志&#xff0c;以折线图、条形图、饼图、热图、区域图、坐标图、仪表、目标、时间等形式。预测或查看输入源的错误或其他重大事件趋势的变化。Kibana 与 Elasticsearch 和 Logstash 同步工作&am…...