QT实现任意阶贝塞尔曲线绘制
bezier曲线在编程中的难点在于求取曲线的系数,如果系数确定了那么就可以用微小的直线段画出曲线。bezier曲线的系数也就是bernstein系数,此系数的性质可以自行百度,我们在这里是利用bernstein系数的递推性质求取:
简单举例
两个点p0,p1 为一阶曲线,系数为 (1-u)p0+u*p1; 将系数存在数组中b[0] =1-u,b[1]=u。
三个点 p0 p1 p2 为二阶曲线,系数(1-u)(1-u)p0+2u(1-u)p1+u*u*p2 可以看出二阶的系数是一届的系数的关系 ((1-u)+u)(b[0]+b[1])。
注意:通过这个公式有没有发现,当u==0的时候这个点就是p0,当u==1的时候这个点就是p2,其他时候点被p1所吸引,也就是p1点的存在会导致(u!=0&&u!=1)的时候生成的点靠近p1。
四个点 三阶曲线为:
((1-u)+u)((1-u)+u)(b[0]+b[1])
是不是有种似曾相识的感觉,对了,这就是高中牛顿二项式展开的过程:
二阶贝塞尔曲线实现代码:
QPointF p0(0,0);
QPointF p1(1000,0);
QPointF p2(1000,1000);
QPainterPath path;
path.moveTo(p0);
QPointF pTemp;
for(double t=0; t<1; t+=0.01) //2次Bezier曲线
{pTemp =pow((1-t),2)*p0+2*t*(1-t)*p1+pow(t,2)*p2;path.lineTo(pTemp);
}
没有使用贝塞尔曲线(三个点直接相连)画出来三角形是这样:
使用贝塞尔曲线之后,(1000,0)这个位置的角会圆化:
上图中你会发现曲线不太圆滑,这个你可以调参数precision,主要的问题是它用了贝塞尔曲线之后都不像一个三角形了,我们只想对三角形的角进行圆化。我们可以选择构成三角形角的两边上接近交点位置的两个点,用这个两个点和这两边的交点(三角形的角)生成贝塞尔曲线,效果如下:
我们发现他就是有很多短小的曲线构成的,所以这就是多边形的角圆化的原理。
上面是实现的二阶贝塞尔曲线,但是有时候我们可能会使用其他阶数曲线,所以我们需要改一下代码使得代码更大众化:
/*** @brief createNBezierCurve 生成N阶贝塞尔曲线点* @param src 源贝塞尔控制点,里面有两个点就是一阶,有三个点就是二阶,依次类推* @param dest 目的贝塞尔曲线点* @param precision 生成精度,控制着细小直线的长度,细小直线长度越小模拟出现的圆角越圆滑(此值越小细小直线长度越小)*/
static void createNBezierCurve(const QList<QPointF> &src, QList<QPointF> &dest, qreal precision=0.5)
{if (src.size() <= 0) return;//清空QList<QPointF>().swap(dest);//外侧循环控制(1-u)p0+u*p1中u的值,用来生成多个点for (qreal t = 0; t < 1.0000; t += precision) {int size = src.size();QVector<qreal> coefficient(size, 0);coefficient[0] = 1.000;qreal u1 = 1.0 - t;//里面循环用来生成每一次u改变之后的参数值,参数就是二项展开式,然后把参数和各顶点乘起来就得到贝塞尔曲线的一个顶点for (int j = 1; j <= size - 1; j++) {qreal saved = 0.0;for (int k = 0; k < j; k++){qreal temp = coefficient[k];coefficient[k] = saved + u1 * temp;saved = t * temp;}coefficient[j] = saved;}//最后的贝塞尔顶点QPointF resultPoint;for (int i = 0; i < size; i++) {QPointF point = src.at(i);resultPoint = resultPoint + point * coefficient[i];}dest.append(resultPoint);}
}
然后我来讲讲代码如何实现把三角形的角圆化的:
/*
src就是保存多边形所有顶点的集合,要有序(有序的意思就是按照点的顺序可以形成一个多边形)
dest就是一个空的集合,最后生成的所有点都放在里面,然后按照这些点依次连接最后就是一个角圆化之后的多边形*/
void GeometryViewer::centralHandler(vector<CVector2d>&src, vector<CVector2d>&dest)
{vector<CVector2d>tmp;for (int i = 0; i < src.size(); ++i){ //对于每一个多边形顶点(角),我们需要找到构成这个顶点的两条直线上接近顶点的两个点,用这三个点生成贝塞尔曲线CVector2d pt1 = getLineStart(src[i],src[(src.size() + i - 1) % src.size()]);tmp.push_back(pt1);tmp.push_back(src[i]);CVector2d pt3 = getLineStart(src[i], src[(i + 1) % src.size()]);tmp.push_back(pt3);createNBezierCurve(tmp, dest);tmp.clear();}
}
CVector2d类的功能大致如下:
class CVector2d
{
public:double X,Y;CVector2d(double x,double y):X(x),Y(y){X=x;Y=y;printf("%lf 00**** %lf\n",x,y);}CVector2d operator+(CVector2d y)const{return CVector2d(X+y.X,Y+y.Y);}
};
getLineStart它将返回一个点, 该点是pt1顶点朝着pt2顶点离开m_uiRadius像素。变量fRat保持半径与第i个线段长度之间的比率。还有一项检查可以防止fRat的值超过0.5。如果fRat的值超过0.5, 则两个连续的圆角将重叠, 这将导致较差的视觉效果。
当从点P1到点P2直线行驶并完成距离的30%时, 我们可以使用公式0.7•P1 + 0.3•P2确定位置。通常, 如果我们获得完整距离的一小部分, 并且α= 1表示完整距离, 则当前位置为(1-α)•P1 +α•P2。
这就是GetLineStart方法确定在第(i + 1)方向上距离第i个顶点m_uiRadius像素的点的位置的方式。
CVector2d GeometryViewer::getLineStart(CVector2d pt1,CVector2d pt2,double radius=0.0)
{CVector2d pt;double fRat;if(radius==0)fRat = 0.02;else fRat = radius / getDistance(pt1, pt2);if (fRat > 0.5f)fRat = 0.5f;pt.X = (1.0f - fRat)*pt1.X + fRat*pt2.X;pt.Y = (1.0f - fRat)*pt1.Y + fRat*pt2.Y;return pt;
}
//欧几里得距离
double getDistance(CVector2d pt1, CVector2d pt2)
{double fD = (pt1.X - pt2.X)*(pt1.X - pt2.X) +(pt1.Y - pt2.Y) * (pt1.Y - pt2.Y);return sqrt(fD);
}
相关文章:

QT实现任意阶贝塞尔曲线绘制
bezier曲线在编程中的难点在于求取曲线的系数,如果系数确定了那么就可以用微小的直线段画出曲线。bezier曲线的系数也就是bernstein系数,此系数的性质可以自行百度,我们在这里是利用bernstein系数的递推性质求取: 简单举例 两个…...

【Java 基础篇】Java 数组使用详解:从零基础到数组专家
如果你正在学习编程,那么数组是一个不可或缺的重要概念。数组是一种数据结构,用于存储一组相同类型的数据。在 Java 编程中,数组扮演着非常重要的角色,可以帮助你组织、访问和操作数据。在本篇博客中,我们将从零基础开…...

基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作
文献计量学是指用数学和统计学的方法,定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体,注重量化的综合性知识体系。特别是,信息可视化技术手段和方法的运用,可直观的展示主题的研究发展历程、研究现状、研究…...

docker_python-django_uwsgi_nginx_浏览器_网络访问映过程
介绍 1:介绍docker中使用uwsgi服务器启动django 设置了uwsgi的脚本 2:介绍启动uwsgi后,使用本地浏览器去访问这个容器中的端口 3:分别使用了3个ip地址去访问这个服务 1:使用本地连接*2 2:使用windows系统里…...

Python爬取天气数据并进行分析与预测
随着全球气候的不断变化,对于天气数据的获取、分析和预测显得越来越重要。本文将介绍如何使用Python编写一个简单而强大的天气数据爬虫,并结合相关库实现对历史和当前天气数据进行分析以及未来趋势预测。 1 、数据源选择 选择可靠丰富的公开API或网站作…...

基础算法-递推算法-学习
现象: 基础算法-递推算法-学习 方法: 这就是一种递推的算法思想。递推思想的核心就是从已知条件出发,逐步推算出问题的解 最常见案例: 一:正向递推案例: 弹力球回弹问题: * 弹力球从100米高…...

L1-056 猜数字(Python实现) 测试点全过
前言: {\color{Blue}前言:} 前言: 本系列题使用的是,“PTA中的团体程序设计天梯赛——练习集”的题库,难度有L1、L2、L3三个等级,分别对应团体程序设计天梯赛的三个难度。更新取决于题目的难度,…...

第 361 场 LeetCode 周赛题解
A 统计对称整数的数目 枚举 x x x class Solution { public:int countSymmetricIntegers(int low, int high) {int res 0;for (int i low; i < high; i) {string s to_string(i);if (s.size() & 1)continue;int s1 0, s2 0;for (int k 0; k < s.size(); k)if …...

07-架构2023版-centos+docker部署Canal 实现多端数据同步
canal 工作原理 canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送dump 协议MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal )canal 解析 binary log 对象(原始为 byte 流)基于日志增量订阅和消费的业务包括 数据库镜…...

过滤器的应用-Filter
过滤器 1.工作原理 2.创建Filter 2.1通过注解的方式实现 //创建一个类,实现Filter接口 WebFilter(urlPatterns "/myfilter") //urlPatterns表示需要拦截的路径 public class MyFilter implements Filter {Overridepublic void doFilter(ServletReques…...

leetcode236. 二叉树的最近公共祖先(java)
二叉树的最近公共祖先 题目描述递归法代码演示 上期经典 题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q …...

spacy安装旧版本en_core_web_sm的解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

Qt +VTK+Cmake 编译和环境配置(第一篇 采坑)
VTK下载地址:https://vtk.org/download/ cmake下载地址:https://cmake.org/download/ 版本对应方面,如果你的项目对版本没有要求,就不用在意。我就是自己随机搭建的,VTK选择最新版本吧,如果后面其他的库不…...

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书南宁师范大学图书馆
2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书南宁师范大学图书馆...

C++/C# : C#和C++的不同
C#和C是两种不同的编程语言,虽然在某些方面它们具有相似之处,但它们也有一些明显的不同点,如下: C是一种静态类型编程语言,而C#是一种动态类型编程语言。 C允许开发者手动管理内存的分配和释放,但是C#的垃…...

PCL-直通滤波器原理及实验
文章目录 原理使用过程代码实验总结 原理 直通滤波器的作用是过滤在指定维度方向上取值不在给定值域内的点,即点云数据有xyz三维坐标,选择一个方向的维度的数据,设置一个范围,在这个范围中的点云会被保留,不在此范围内…...

数学建模:相关性分析
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:相关性分析 文章目录 数学建模:相关性分析相关性分析两变量的相关分析PearsonSpearmanKendall tua-b 双变量关系强度测量的指标相关系数的性质代码实现example偏相关分析 相…...

thinkPHP项目搭建
1 宝塔添加站点 (1)打开命令提示行,输入以下命令,找到hosts文件。 for /f %P in (dir %windir%\WinSxS\hosts /b /s) do copy %P %windir%\System32\drivers\etc & echo %P & Notepad %P (2)添加域…...

C++中几种处理函数返回值的方式
目录 C中几种处理函数返回值的方式:值返回引用返回指针返回总结 C中几种处理函数返回值的方式: 值返回 函数可以返回一个具体的值,例如整数、浮点数、结构体、类对象等。返回值被复制到函数调用点,在调用点可以直接使用或赋给其…...

跟我学c++中级篇——c++中的Abominable Function Types
一、Abominable Function Types Abominable Function Types,令人讨厌(憎恶)的函数类型。这个在c的技术点中,很少有人了解。那么什么是Abominable Function Types呢?看下面的例子: using func void(); using func…...

计算机毕设之基于python+django+mysql的影片数据爬取与数据分析(包含源码+文档+部署教程)
影片数据爬取与数据分析分为两个部分,即管理员和用户。该系统是根据用户的实际需求开发的,贴近生活。从管理员处获得的指定账号和密码可用于进入系统和使用相关的系统应用程序。管理员拥有最大的权限,其次是用户。管理员一般负责整个系统的运…...

slog正式版来了:Go日志记录新选择!
在大约一年前,我就写下了《slog:Go官方版结构化日志包[1]》一文,文中介绍了Go团队正在设计并计划在下一个Go版本中落地的Go官方结构化日志包:slog[2]。但slog并未如预期在Go 1.20版本[3]中落地,而是在golang.org/x/exp…...

华为静态路由配置实验(超详细讲解+详细命令行)
系列文章目录 华为数通学习(7) 前言 一,静态路由配置 二,网络地址配置 AR1的配置: AR2的配置: AR3的配置: 三,测试是否连通 AR1的配置: 讲解: AR2的配置&#…...

axios源码学习
1 判断一个对象是否普通对象 Symbol.toStringTag:可以修改Object.prototype.toString.call返回的后缀,普通对象自带该属性,不需要设置,如果设置说明该对象不是普通对象Symbol.iterator:拥有该属性的对象可以使用for o…...

【SpingBoot】详细介绍SpringBoot项目中前端请求到数据库再返回前端的完整数据流转,并用代码实现
在SpringBoot项目中,前端请求到最终返回的完整数据流转一般包括以下几个步骤: 前端发送HTTP请求到后端Controller。 Controller接收到请求后,调用相关Service处理业务逻辑。 Service调用DAO层获取数据。 DAO层访问数据库获取数据。 数据库…...

kubesphere devops使用
一、创建项目 1 创建项目 企业管理员切换到相应企业空间(租户),创建项目,k8s集群会创建一个相同名字的namespace。如下图所示管理员创建一个ipaas-devops项目。 2.创建镜像拉取密钥信息 进入项目如ipaas-devops,选择配置->保密字典->创建…...

Selenium如何用于编写自动化测试脚本?
Selenium如何用于编写自动化测试脚本?它提供了许多测试工具和API,可以与浏览器交互,模拟用户操作,检查网页的各个方面。下面是一些步骤,可以帮助你编写Selenium自动化测试脚本。 1、安装Selenium库和浏览器驱动程序 首…...

linux入门到精通-第二章-常用命令和工具
目录 概述命令格式帮助文档内建命令外部命令(--help)帮助文档查看man查看谁登陆过电脑 文件目录命令创建目录显示目录结构删除目录 文件相关命令ls命令touchcprm删除mv移动命令 文件查看命令cat 文件内容查看命令less 查看文件内容head 从文件头部查看ta…...

C语言初阶测评题:测试你的基础知识和编程技能!!
💓博客主页:江池俊的博客⏩收录专栏:C语言刷题专栏👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐ 文…...

使用HTTPS模式建立高效爬虫IP服务器详细步骤
嘿,各位爬虫小伙伴们!想要自己建立一个高效的爬虫IP服务器吗?今天我就来分享一个简单而强大的解决方案——使用HTTPS模式建立工具!本文将为你提供详细的操作步骤和代码示例,让你快速上手,轻松建立自己的爬虫…...