当前位置: 首页 > news >正文

C++算法 —— 动态规划(1)斐波那契数列模型

文章目录

  • 1、动规思路简介
  • 2、第N个泰波那契数列
  • 3、三步问题
  • 4、使用最小花费爬楼梯
  • 5、解码方法
  • 6、动规分析总结


1、动规思路简介

动规的思路有五个步骤,且最好画图来理解细节,不要怕麻烦。当你开始画图,仔细阅读题时,学习中的沉浸感就体验到了。

状态表示
状态转移方程
初始化
填表顺序
返回值

动规一般会先创建一个数组,名字为dp,这个数组也叫dp表。通过一些操作,把dp表填满,其中一个值就是答案。dp数组的每一个元素都表明一种状态,我们的第一步就是先确定状态。

状态的确定可能通过题目要求来得知,可能通过经验 + 题目要求来得知,可能在分析过程中,发现的重复子问题来确定状态。还有别的方法来确定状态,但都大同小异,明白了动规,这些思路也会随之产生。状态的确定就是打算让dp[i]表示什么,这是最重要的一步。

状态转移方程,就是dp[i]等于什么,状态转移方程就是什么。像斐波那契数列,dp[i] = dp[i - 1] + dp[i - 2]。这是最难的一步。一开始,可能状态表示不正确,但不要紧,大胆制定状态,如果没法推出转移方程,没法得到结果,那这个状态表示就是错误的。所以状态表示和状态转移方程是相辅相成的,可以帮你检查自己的思路。

初始化,就是要填表,保证其不越界。像第一段所说,动规就是要填表。比如斐波那契数列,如果要填dp[1],那么我们可能需要dp[0]和dp[-1],这就出现越界了,所以为了防止越界,一开始就固定好前两个值,那么第三个值就是前两个值之和,也不会出现越界。

填表顺序。填当前状态的时候,所需要的状态应当已经计算过了。还是斐波那契数列,填dp[4]的时候,dp[3]和dp[2]应当都已经计算好了,那么dp[4]也就出来了,此时的顺序就是从左到右。

返回值,要看题目要求。

2、第N个泰波那契数列

1137. 第 N 个泰波那契数

在这里插入图片描述

泰波那契数列从T0开始,而不是从1开始,这也是和斐波那契数列不同的点,但本质上思路都很相似。接下来要用动态规划来解决问题。

在这个题目中,我们让dp表的每一个元素都存储一个泰波那契数列,0下标对应T0,1下标对应T1。为什么要确定成这样的状态?题目要求拿到Tn的值,并且也存在T0,和数组下标一致,那么我们最好就把所有的数都填上,然后n作为下标,dp[n]一下子就能拿到结果。

根据上面的解析,我们这样写

    int tribonacci(int n) {//1. 状态表示: dp[i]就是第i个泰波那契数//2. 状态转移方程: 题目给了,Tn+3 = Tn + Tn+1 + Tn+2//处理边界情况,n如果小于3,那么只能取0, 1, 2,也可以走下面循环,但不如创建dp表之前就返回对应的值,减少空间消耗if(n == 0) return 0;if(n == 1 || n == 2) return 1;vector<int> dp(n + 1);dp[0] = 0, dp[1] = dp[2] = 1;//3. 初始化for(int i = 3; i <= n; i++){dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];//4. 填表顺序,也体现了状态转移方程}return dp[n];//5. 返回值}

这道题还可以优化一下空间。动规里要优化空间通常用滚动数组。当一个状态仅需要前面若干个状态来确定时,就可以用滚动数组。N^2的空间复杂度可以优化成N。当dp[3]确定后,我们让前四个值设为abcd,起初a是dp[0],b是dp[1],c是dp[2],d是dp[3],要算dp[4]的时候,就让abcd往后挪一位,也就是a是dp[1],d是dp[4],然后d = a + b + c,求出dp[4],算dp[5]的时候,还是一样的操作,让a来到dp[2]的位置,d则是dp[5]。这几个变量我们可以创建一个小数组来存储,也可以就创建四个变量。当开始滚动时,我们让a = b, b = c, c = d这样就能滚动了,但不能反向赋值,也就是c = d, b = c, a = b因为b要的是c之前的值,而c已经被赋值成d了,所以不行。使用变量来求值后,我们就可以不需要dp表了,只用四个变量来求出结果

    int tribonacci(int n) {//1. 状态表示: dp[i]就是第i个泰波那契数//2. 状态转移方程: 题目给了,Tn+3 = Tn + Tn+1 + Tn+2//处理边界情况,n如果小于3,那么只能取0, 1, 2,也可以走下面循环,但不如创建dp表之前就返回对应的值,减少空间消耗if(n == 0) return 0;if(n == 1 || n == 2) return 1;int a = 0, b = 1, c = 1, d = 0;//3. 初始化for(int i = 3; i <= n; i++){d = a + b + c;//4. 顺序a = b; b = c; c = d;//循环结束后,d就是最终的值}return d;//5. 返回值}

3、三步问题

面试题 08.01. 三步问题

在这里插入图片描述

可1可2还可3,这个状态转移方程应当如何算?先不要着急,一步步看题。根据题目,我们可以知道状态是到达i位置时,总共有几种方式,dp[i]记录着方式的个数。接下来就是找状态转移方程。虽然题目有三种计算,但我们不妨算几个值来看看,n = 1,2,3,4时,分别是1,2,4,7,如果仔细去加每一个n值的方法个数,会发现每一个n值就是前面3个n值的和,比如1 +2 + 4 = 7,所以这个题是有规律的,那么它的状态转移方程就是dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]。从1开始,dp[1],dp[2],dp[3]就分别初始化为1,2,4。填表顺序就是从左到右。返回值就是dp[n]。

由于本题中数目会过大,要取模,如果加完3个数再取模会不通过,要加完2个数就取模,然后再整体取模。

    int waysToStep(int n) {if(n == 1 || n == 2) return n;if(n == 3) return 4;const int MOD = 1e9 + 7;vector<int> dp(n + 1);dp[1] = 1, dp[2] = 2, dp[3] = 4;for(int i = 4; i <= n; i++){dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;}return dp[n];}

当然这个题也可以空间优化,和上一个题一样。

    int waysToStep(int n) {if(n == 1 || n == 2) return n;if(n == 3) return 4;const int MOD = 1e9 + 7;int a = 1, b = 2, c = 4, d = 0;for(int i = 4; i <= n; i++){d = ((a + b) % MOD + c) % MOD;a = b; b = c; c = d;}return d;}

4、使用最小花费爬楼梯

746. 使用最小花费爬楼梯

在这里插入图片描述

10,15,20,当你在10的位置,你会花费10块钱,往后走一次或者两次,当你在15的位置,你会花费15块钱,向后走一次或两次。但给的数组中最右边的元素不是楼顶,所有元素都是楼梯,楼顶在最后一个元素的下一个位置,比如示例1,在15的位置,花费15块钱,一次性跨2个楼梯,就到达了楼顶。

这道题的状态表示是什么样的?像一维dp数组,根据以上两道题来看,都是以i位置结尾来做状态表示,这道题也是一样,计算到i位置处最少需要的钱,所以dp[1],dp[2]就是到达1,2位置时最少的花费。

状态转移方程如何确定?看到现在,我们可以总结出一个规律,利用之前或者之后的状态,推导出dp[i]的值,比如dp[i]由dp[i - 1],dp[i - 2]等或者dp[i + 1], dp[i + 2]来确定。这道题来看,dp[i]要么从i - 1处走1步到达i,要么i - 2处走2步到达i,两种情况比较大小来得到dp[i]的值,而dp[i - 1],dp[i - 2]又是之前推导过来的。所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])。

初始化的时候,要不越界,需要初始化最前面的2个位置,根据题目,我们可以从0位置或者1位置开始,那么这两个位置就初始化成0即可。填表顺序是从左到右。返回值是dp[i]。

根据以上分析,写出代码

    int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();vector<int> dp(n + 1);for(int i = 2; i <= n; i++){dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[n];}

这道题还可以用另一种状态表示来写。上面是yii位置为结尾,这次是以i位置为起点。此时的dp[i]是从i位置出发,到达楼顶的最小花费,这个i从0开始。

这次的状态转移方程如何确定?从i位置出发,可以走一步,走两步,所以也分成2种情况,走一步,从i + 1位置到终点;走两步,从i + 2位置到终点,然后再算i + 1或者i + 2处算最小花费。第一种情况是dp[i + 1] + cost[i],第二种情况是dp[i + 2] + cost[i],去两者之小。

这次的初始化应该如何做?上一次是取dp[i - 1]和dp[i - 2],我们初始化最左边的两个值,现在是取dp[i + 1]和dp[i + 2],那最容易确定的就是最右边的两个值,dp[n - 1]和dp[n - 2],它们俩就分别是花费当前位置的钱即可。这次的填表顺序就是从右到左。返回值则是dp[0]和dp[1]的最小值,楼顶是n位置处。

思路其实相似,不过就是反过来了。这次开辟的数组就不用n + 1了,之前我们需要算到dp[n],而现在n - 1处是起始点。

    int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();/*vector<int> dp(n + 1);for(int i = 2; i <= n; i++){dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[n];*/vector<int> dp(n);dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2];for(int i = n - 3; i >= 0; i--){dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i];//因为都要加一个cost[i],所以就提出来}return min(dp[0], dp[1]);}

5、解码方法

91. 解码方法

在这里插入图片描述
在这里插入图片描述

这道题还是可以用上面的分析。状态表示我们先表示为以i位置结尾。字符串有i个字符,i位置的数字应当是从第一个字符开始到i位置的字符总共能编码的个数,所以dp[i]是以i位置为结尾时,解码方法的总数。

状态转移方程如何确定?根据上面那些题的分析,我们知道要根据最近的一步,来划分问题,i位置处自己可能可以编码,i - 1和i位置处也可能可以编码,而由于是以i位置为结尾,所以i和i + 1就不管,不能i - 2位置组合起来编码是因为字母所代表的数字最多是两位数,所以这点就可以帮助我们确定方程。

现在是两种情况,dp[i]单独解码,dp[i- 1]和dp[i]组合解码。每个情况都有成功失败,如果dp[i]可以解码成功,那就说明从0到i - 1位置的所有编码方案后面加上一个i位置的字符就可以了,所以此时dp[i]的方案数就是dp[i - 1]的方案数。如果dp[i]单独编码失败,那么前面所有的可解码方案就全失败了,那么就是0了。

dp[i - 1]和dp[i]解码,也有成功失败。如果成功,那么i - 1处字符对应的数字乘10 + i处字符对应的数字应当>= 10 && <= 26,因为题目中说了不可能出现06这种情况,所以只能是一个正常的两位数,10及以上。把i - 1和i看作一个整体,这时候就相当于dp[i - 2]的所有方案后面都加上两个字符即可,所以就是dp[i - 2]的方案数。如果失败,也是一样,前面的全失败了,为0。

根据以上的分析,dp[i] = dp[i - 1] + dp[i - 2],但这两个并不是一定都加得上,可能为0。

初始化应当如何做?有两个方法。dp[i]既然是由前两个位置决定的,那么初始化时就得考虑一下dp[0]和dp[1],dp[0]要么是1,要么是0,它只有一个字符,dp[1]代表2种字符,2个字符都能单独解码是1种情况,2个字符组合才能解码是另一种情况,满足其中一个就是1,两个都满足就是2,都不满足就是0,所以dp[1]是0,1,2三个情况。

填表顺序是从左到右。而返回值,我们要解码到最后一个位置,所以应当是dp[n - 1]。

    int numDecodings(string s) {int n = s.size();vector<int> dp(n);dp[0] = s[0] != '0' ? 1 : 0;//判断dp[0]能否单独解码if(n == 1) return dp[0];//处理边界情况if(s[0] != '0' && s[1] != '0') dp[1] += 1;//判断dp[0]dp[1]能否都单独解码int t = (s[0] - '0') * 10 + s[1] - '0';if(t >= 10 && t <= 26) dp[1] += 1;//判断dp[0]dp[1]组合能否解码for(int i = 2; i < n; i++){if(s[i] != '0') dp[i] += dp[i - 1];//判断能否单独解码int t = (s[i - 1] - '0') * 10 + s[i] - '0';//判断能否组合解码if(t >= 10 && t <= 26) dp[i] += dp[i - 2];}return dp[n - 1];}

现在写一下另一种初始化方法。上面的代码可以看出,有段代码是重复的

        if(s[0] != '0' && s[1] != '0') dp[1] += 1;//判断dp[0]dp[1]能否都单独解码int t = (s[0] - '0') * 10 + s[1] - '0';if(t >= 10 && t <= 26) dp[1] += 1;//判断dp[0]dp[1]组合能否解码if(s[i] != '0') dp[i] += dp[i - 1];//判断能否单独解码int t = (s[i - 1] - '0') * 10 + s[i] - '0';//判断能否组合解码if(t >= 10 && t <= 26) dp[i] += dp[i - 2];

之前的dp表示[0, n - 1],现在我们给它扩充一个元素,变成[0, n],那么之前的dp[1],就相当于新表的dp[2],之前的dp[0]就是现在的dp[1],之前的dp[n - 1]就是新的dp[n],新表的dp[0]就是一个虚拟节点,用来更方便的初始化,下面能看到它起作用的地方。这个方法有一些注意的点。一个是要保证字符串中1位置处的字符能对应到dp[2],也就是保证映射关系;另一个就是新表中的dp[0],如何初始化它来保证结果正确。

我们要让循环从i = 2开始,使用相同的判断方法,dp[1]不是问题,而dp[0],对于dp[2]来说,就是dp[i - 2],那么如果原字符串中0和1位置,也就是新表的1和2位置处的字符能够组合编码,那就应该+dp[i - 2],也就是+1,所以dp[0]应当初始化为1。

字符串从0位置开始走,判断0位置的字符,对应的新表的1位置,i是在新表中走的,也就是此时i = 1,那应当判断s[1 - 1]的位置,也就是s[i - 1]的位置,就可以保证映射关系了。

   int numDecodings(string s) {int n = s.size();//优化vector<int> dp(n + 1);dp[0] = 1;dp[1] = s[1 - 1] != '0' ? 1 : 0;//s[0]for(int i = 2; i <= n; i++){if(s[i - 1] != '0') dp[i] += dp[i - 1];//判断能否单独解码int t = (s[i - 2] - '0') * 10 + s[i - 1] - '0';//判断能否组合解码if(t >= 10 && t <= 26) dp[i] += dp[i - 2];}return  dp[n];}

6、动规分析总结

状态的表示通常是以某个位置为结尾或者起点
状态转移方程的确定需要分析最近的一步
初始化的第二种方法是设立虚拟节点,注意事项就是如何初始化虚拟节点的数值来保证填表的结果是正确的,以及新表和旧表的映射关系的维护
填表顺序要看分析而决定

结束。

相关文章:

C++算法 —— 动态规划(1)斐波那契数列模型

文章目录 1、动规思路简介2、第N个泰波那契数列3、三步问题4、使用最小花费爬楼梯5、解码方法6、动规分析总结 1、动规思路简介 动规的思路有五个步骤&#xff0c;且最好画图来理解细节&#xff0c;不要怕麻烦。当你开始画图&#xff0c;仔细阅读题时&#xff0c;学习中的沉浸…...

Elasticsearch 对比传统数据库:深入挖掘 Elasticsearch 的优势

当你为项目选择数据库或搜索引擎时&#xff0c;了解每个选项的细微差别至关重要。 今天&#xff0c;我们将深入探讨 Elasticsearch 的优势&#xff0c;并探讨它与传统 SQL 和 NoSQL 数据库的比较。 1. Elasticsearch简介 Elasticsearch 以强大的 Apache Lucene 库为基础&#…...

ICG-Tetrazine的合成方法和步骤-星戈瑞

ICG-Tetrazine的合成方法可以通过多步反应完成&#xff0c;以下是一种常见的合成方法和步骤的示例&#xff1a; 吡咯环合成&#xff1a;首先合成吡咯环作为ICG-Tetrazine的核心结构。可以使用合适的反应条件将相应的吡咯前体化合物&#xff08;例如吡咯-2-甲酸&#xff09;与活…...

C ++ 学习之分文件 实现类

前言 当您在 C 中编写较大的程序时&#xff0c;将所有代码都放在一个文件中可能会变得混乱和不可维护。为了更好地组织代码并提高可维护性&#xff0c;您可以使用分文件实现&#xff08;Separate Compilation&#xff09;的概念。 正文 我的 circle.h 文件 #pragma once #i…...

vue+elementui前端rules校验缓存问题

场景&#xff1a; 最近公司要求项目前端不要用element-ui&#xff0c;改为使用公司其他组开发的ui组件。 这个ui组件使用基本就是安装后&#xff0c;直接全局替换elementui的el-前缀为公司开发的xx-前缀。 替换之后&#xff0c;发现替换倒是很丝滑&#xff0c;问题不大。可以运…...

使用Vue3和Vite升级你的Vue2+Webpack项目

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

WebSocket 协议及其使用案例

文章目录 前言一、初识 WebSocket 协议1.1 什么是 WebSocket 协议1.2 WebSocket 与 HTTP 的关系1.3 WebSocket 握手的过程1.4 WebSocket 解决了什么问题 二、WebSocket 数据帧格式2.1 WebSocket 数据帧格式图示2.2 各字段的详细说明 三、SpringBoot 项目中引入 WebSocket3.1 创…...

Java应用CPU占用过高故障排除

一、背景 最近测试反馈测试环境接口偶现有访问超时&#xff0c;然后APP提示是网络失败&#xff0c;看了一下测试环境的应用完全没啥问题&#xff0c;一直以为是网络问题。 今天测试有反馈了&#xff0c;赶紧看了一下测试服务器&#xff0c;这次终于有症状了&#xff0c;CPU直…...

嵌入式Linux开发实操(十五):nand flash接口开发(2)

通用NAND驱动程序支持几乎所有基于NAND的芯片,并将它们连接到Linux内核的内存技术设备(MTD)子系统。这个接口走的是nand的并口,可以在shell的/dev中看到设备,比如/mtd0、/mtd0ro…,mtdblock0、mtdblock1… sysfs在设备层次结构中提供了几个视角。设备必须挂在某条总线bus…...

作为一家游戏开发公司,有哪些经验可以分享?

在竞争激烈的游戏开发行业中&#xff0c;成功的游戏开发公司需要不断学习、创新和积累经验。作为一家经验丰富的游戏开发公司&#xff0c;我们愿意分享一些我们认为对于取得成功至关重要的经验和教训。这些经验涵盖了游戏开发的各个方面&#xff0c;从创意构思到发布和营销。希…...

【100天精通Python】Day51:Python 数据分析_数据分析入门基础与Anaconda 环境搭建

目录 1 科学计算和数据分析概述 2. 数据收集和准备 2.1 数据收集 2.1.1 文件导入&#xff1a; 2.1.2 数据库连接&#xff1a; 2.1.3 API请求&#xff1a; 2.1.4 网络爬虫&#xff1a; 2.2 数据清洗 2.2.1 处理缺失值&#xff1a; 2.2.2 去除重复值&#xff1a; 2.2…...

网络安全(黑客)自学路线

很多人上来就说想学习黑客&#xff0c;但是连方向都没搞清楚就开始学习&#xff0c;最终也只是会无疾而终&#xff01;黑客是一个大的概念&#xff0c;里面包含了许多方向&#xff0c;不同的方向需要学习的内容也不一样。 算上从学校开始学习&#xff0c;已经在网安这条路上走…...

HTML5

写在前面 一、简单认识HTML 1.1 什么是网页【2023/08/31】 网站是指因特网上根据一定的规则&#xff0c;使用HTML等制作的用于展示特定内容相关的网页集合。 网页是网站中的一“页”&#xff0c;通常是HTML格式的文件&#xff0c;它要通过浏览器来阅读。 网页是构成网站的…...

Vue+Element-ui实现表格本地导入

表格文件存储在前端 如图&#xff0c;表格文件template.xlsx存储在public下的static文件夹下 注意这里的路径容易报错 a链接下载文件失败的问题(未发现文件&#xff09; a.href ‘./static/template.xlsx’ 写的时候不能带public&#xff0c;直接这么写就可以 DownloadTemp…...

Golang参数输入

Golang参数输入 1.命令行参数&#xff08;os.Args&#xff09; package mainimport ("fmt""os""strconv" )func main() {for i, num : range os.Args[1:] {fmt.Println("参数"strconv.Itoa(i)": ", num)} } //输入&#x…...

2023年8月第4周大模型荟萃

2023年8月第4周大模型荟萃 2023.8.31版权声明&#xff1a;本文为博主chszs的原创文章&#xff0c;未经博主允许不得转载。 1、美国法官最新裁定&#xff1a;纯AI生成的艺术作品不受版权保护 美国华盛顿一家法院近日裁定&#xff0c;根据美国政府的法律&#xff0c;在没有任何…...

Kafka监控工具,LinkedIn详解

Kafka监控工具包括以下几种&#xff1a; Kafka Manager&#xff1a;这是一个开源的Kafka集群管理工具&#xff0c;可以监控Kafka集群的健康和性能&#xff0c;并提供可视化的用户界面。 Kafka Monitor&#xff1a;这是LinkedIn开发的一个监控工具&#xff0c;可以监控Kafka集群…...

如何处理 Flink 作业频繁重启问题?

分析&回答 Flink 实现了多种重启策略 固定延迟重启策略&#xff08;Fixed Delay Restart Strategy&#xff09;故障率重启策略&#xff08;Failure Rate Restart Strategy&#xff09;没有重启策略&#xff08;No Restart Strategy&#xff09;Fallback重启策略&#xff…...

Windows 安装 RabbitMq

Windows 上安装 RabbitMQ 的步骤 RabbitMQ 是一个强大的开源消息队列系统&#xff0c;广泛用于构建分布式、可扩展的应用程序。本教程将带您一步一步完成在 Windows 系统上安装 RabbitMQ 的过程。无需担心&#xff0c;即使您是初学者&#xff0c;也能够轻松跟随这些简单的步骤…...

Mybatis的关系关联配置

前言 MyBatis是一个流行的Java持久化框架&#xff0c;它提供了一种简单而强大的方式来映射Java对象和关系数据库之间的数据。在MyBatis中&#xff0c;关系关联配置是一种用于定义对象之间关系的方式&#xff0c;它允许我们在查询数据库时同时获取相关联的对象。 在MyBatis中&…...

【知识积累】准确率,精确率,召回率,F1值

二分类的混淆矩阵&#xff08;预测图片是否是汉堡&#xff09; 分类器到底分对了多少&#xff1f; 预测的图片中正确的有多少&#xff1f; 有多少张应该预测为是的图片没有找到&#xff1f; 精确率和召回率在某种情况下会呈现此消彼长的状况。举个极端的例子&#xf…...

什么是分布式系统?

分布式系统是由多个独立的计算机或计算节点组成的系统&#xff0c;这些节点通过消息传递或共享数据的方式进行协调和通信&#xff0c;以实现共同的目标。分布式系统的设计目标是提高系统的可靠性、可扩展性、性能和容错性。 在一个分布式系统中&#xff0c;各个计算机节点之间…...

[AGC043D] Merge Triplets

题目传送门 引 很有意思的计数题 解法 考虑经过操作后得到的排列的性质 性质1&#xff1a; 设 p r e ( i ) pre(i) pre(i):前i个位置的最大值&#xff0c;则不会出现超过3个的连续位置的 p r e pre pre相同 必要性&#xff1a; 考虑反证&#xff0c;若有超过 3 3 3个的连续…...

2023年人工智能开源项目前20名

推荐&#xff1a;使用 NSDT场景编辑器快速搭建3D应用场景 1. Tensorflow 2. Hugging Face Transformers 3. Opencv 4. Pytorch 5. Keras 6. Stable Diffusion 7. Deepfacelab 8. Detectron2 9. Apache Mxnet 10. Fastai 11. Open Assistant 12. Mindsdb 13. Dall E…...

ThinkPHP 集成 jwt 技术 token 验证

ThinkPHP 集成 jwt 技术 token 验证 一、思路流程二、安装 firebase/php-jwt三、封装token类四、创建中间件&#xff0c;检验Token校验时效性五、配置路由中间件六、写几个测试方法&#xff0c;通过postman去验证 一、思路流程 客户端使用用户名和密码请求登录服务端收到请求&…...

gerrit 如何提交进行review

前言 本文主要介绍如何使用gerrit进行review。 下述所有流程都是参考&#xff1a; https://gerrit-review.googlesource.com/Documentation/intro-gerrit-walkthrough.html 先给一个commit后但是还没有push上去的一个办法&#xff1a; git reset --hard HEAD^可以多次reset.…...

罗勇军 →《算法竞赛·快冲300题》每日一题:“游泳” ← DFS+剪枝

【题目来源】http://oj.ecustacm.cn/problem.php?id1753http://oj.ecustacm.cn/viewnews.php?id1023【题目描述】 游泳池可以等分为n行n列的小区域&#xff0c;每个区域的温度不同。 小明现在在要从游泳池的左上角(1, 1)游到右下角(n, n)&#xff0c;小明只能向上下左右四个方…...

【教程】PyTorch Timer计时器

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] OpenCV的Timer计时器可以看这篇&#xff1a;Python Timer和TimerFPS计时工具类 Timer作用说明&#xff1a;统计某一段代码的运行耗时。 直接上代码&#xff0c;开箱即用。 import time import torch import os …...

因果推断(六)基于微软框架dowhy的因果推断

因果推断&#xff08;六&#xff09;基于微软框架dowhy的因果推断 DoWhy 基于因果推断的两大框架构建&#xff1a;「图模型」与「潜在结果模型」。具体来说&#xff0c;其使用基于图的准则与 do-积分来对假设进行建模并识别出非参数化的因果效应&#xff1b;而在估计阶段则主要…...

探索隧道ip如何助力爬虫应用

在数据驱动的世界中&#xff0c;网络爬虫已成为获取大量信息的重要工具。然而&#xff0c;爬虫在抓取数据时可能会遇到一些挑战&#xff0c;如IP封禁、访问限制等。隧道ip&#xff08;TunnelingProxy&#xff09;作为一种强大的解决方案&#xff0c;可以帮助爬虫应用更高效地获…...

邯郸企业网站建设报价/百度广告关键词价格表

Sky数 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 25391 Accepted Submission(s): 14419 Problem DescriptionSky从小喜欢奇特的东西&#xff0c;而且天生对数字特别敏感&#xff0c;一次偶然的机会&…...

建筑设计公司名称/seo最新技巧

打开终端cd /java/tomcat#执行bin/startup.sh #启动tomcatbin/shutdown.sh #停止tomcattail -f logs/catalina.out #看tomcat的控制台输出&#xff1b;#看是否已经有tomcat在运行了ps -ef |grep tomcat#如果有&#xff0c;用kill;kill -9 pid #pid 为相应的进程号例如 pe -ef |…...

什么样的蓝色做网站做好看/aso优化违法吗

改问题是"babel-eslint"版本更新问题导致的&#xff1b; 给大家一个最简单粗暴的解决方案&#xff1a; 在项目里找到对应的工程&#xff1a;直接删除里面的node_modules文件夹&#xff0c;然后重新npm install下就可以了&#xff1b; node_modules文件内容较多&#…...

wordpress nova主题/关键词工具有哪些

用paramiko写堡垒机 paramiko paramiko模块&#xff0c;基于SSH用于连接远程服务器并执行相关操作。 基本用法 SSHClient 基于用户名密码连接&#xff1a; 基础用法: import paramiko# 创建SSH对象 ssh paramiko.SSHClient() # 允许连接不在know_hosts文件中的主机 ssh.set_mi…...

沧州手机网站建设/如何网页优化

2019独角兽企业重金招聘Python工程师标准>>> 摘要 本文介绍了contiki netstack的MAC层以下数据收发层次结构&#xff0c;并讨论如何移植新的无线器件做为contiki的无线收发器。 正文 contiki netstack的数据收发层级 Radio&#xff1a;主要完成物理层无线数据的收发…...

孝感建设银行网站/深圳发布最新通告

软件设计开发原则 1、 单一职责原则 一个方法只做一件事。 描述 我们在平时维护项目时&#xff0c;总会深入具体执行函数修改代码&#xff0c;有的函数非常庞大做了很多的事&#xff0c;这个时候改动的地方将会非常的多&#xff0c;我们还要去考虑改动的地方有没有其他业务…...