当前位置: 首页 > news >正文

【C++杂货铺】探索list的底层实现

在这里插入图片描述

文章目录

  • 一、list的介绍及使用
    • 1.1 list的介绍
    • 1.2 list的使用
      • 1.2.1 list的构造
      • 1.2.2 list iterator的使用
      • 1.2.3 list capacity(容量相关)
      • 1.2.4 list element access(元素访问)
      • 1.2.5 list modifiers(链表修改)
      • 1.2.6 list operation(对链表的一些操作)
  • 二、list的模拟实现
    • 2.1 list的节点
    • 2.2 list的成员变量
    • 2.3 list的迭代器
      • 2.3.1 普通迭代器
      • 2.3.2 const 迭代器
    • 2.4 list的成员函数
      • 2.4.1 构造函数
      • 2.4.2 拷贝构造函数
      • 2.4.3 赋值运算符重载
      • 2.4.4 push_back
      • 2.4.5 迭代器相关
      • 2.4.6 insert
      • 2.4.7 erase
      • 2.4.8 push_front
      • 2.4.9 pop_back
      • 2.4.10 pop_front
      • 2.4.11 size
      • 2.4.12 clear
      • 2.4.13 析构函数
  • 三、结语

一、list的介绍及使用

1.1 list的介绍

  • list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

  • list 的底层是双向链表结构,双向链表中的每个元素存储在互不相关的独立节点中,在节点中通过指针指向的前一个元素和后一个元素。

  • list 和 forward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。

  • 与其它的序列式容器相比(arry、vector、deque),list 通常在任意位置进行插入,移除元素的执行效率更好。

  • 与其它序列式容器相比,list 和 forward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list 的第 5 个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,已保存每个节点的相关联信息。

1.2 list的使用

list 学习时一定要学会查看文档:list的文档介绍,list 在实际中非常重要,在实际中我们熟悉常用的接口就可以,下面列出了需要我们重点掌握的接口。

1.2.1 list的构造

构造函数接口说明
list()list 的默认构造,构造空的 list
list(size_type n, const value_type& val = value_type())构造的 list 中包含 n 个值为 val 的元素
list(const list& x)拷贝构造函数
list(InputIterator first, InputIterator last)用[first,last)区间中的元素构造 list

小Tips:size_type 表示一个无符号整数类型,value_type 是 list 的第一个模板参数,也就是要存储的数据类型。使用迭代器区间的构造函数是函数模板,只要是满足 Input 类型的迭代器都可以使用该构造函数。

void TestList1()
{list<int> l1;                         // 构造空的l1list<int> l2(4, 100);                 // l2中放4个值为100的元素list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3list<int> l4(l3);                    // 用l3拷贝构造l4// 以数组为迭代器区间构造l5int array[] = { 16,2,77,29 };list<int> l5(array, array + sizeof(array) / sizeof(int));// 列表格式初始化C++11list<int> l6{ 1,2,3,4,5 };// 用迭代器方式打印l5中的元素list<int>::iterator it = l5.begin();while (it != l5.end()){cout << *it << " ";++it;}cout << endl;// C++11范围for的方式遍历for (auto& e : l5)cout << e << " ";cout << endl;
}

1.2.2 list iterator的使用

此处,大家可暂时将迭代器理解成一个像指针一样的东西,该指针指向 list 中的某个节点。

函数声明接口说明
begin() + end()返回第一个元素的迭代器 + 返回最后一个元素下一个位置的迭代器
rebegin() + ren()返回第一个元素的 reverse_iterator,即 end 位置,返回最后一个一个元素下一个位置的 reverse_iterator,即 begin 位置

注意:begin 与 end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动。rbegin 与 rend 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动。由于 list 的底层物理空间并不连续,所以 list 的迭代器不再是原生指针,并且 list 的迭代器没有对 + 和 - 进行重载,只重载了 ++ 和 – ,因为空间不连续,重载 + 会比较复杂。即 l.begin() + 5 是不被允许的。

void PrintList(const list<int>& l)
{// 注意这里调用的是list的 begin() const,返回list的const_iterator对象for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it){cout << *it << " ";// *it = 10; 编译不通过}cout << endl;
}void TestList2()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));// 使用正向迭代器正向list中的元素// list<int>::iterator it = l.begin();   // C++98中语法auto it = l.begin();                     // C++11之后推荐写法while (it != l.end()){cout << *it << " ";++it;}cout << endl;// 使用反向迭代器逆向打印list中的元素// list<int>::reverse_iterator rit = l.rbegin();auto rit = l.rbegin();while (rit != l.rend()){cout << *rit << " ";++rit;}cout << endl;
}

注意:遍历链表只能使用迭代器和范围 for。

1.2.3 list capacity(容量相关)

函数声明接口说明
empty检测 list 是否为空,是返回 true,否则返回 false
size返回 list 中有效节点个数

1.2.4 list element access(元素访问)

函数声明接口说明
front返回 list 的第一个节点中值的引用
back返回 list 的最后一个节点中值的引用

1.2.5 list modifiers(链表修改)

函数声明接口说明
push_front在 list 的第一个节点前插入值为 val 的节点
pop_front删除 list 中第一个节点
push_back在 list 尾部插入一个值为 val 的节点
pop_back删除 list 中最后一个节点
insert在 list 的 position 位置中插入一个值为 val 的节点
erase删除 list position 位置的节点
swap交换两个 list 的节点
clear清空 list 中的有效元素

小Tips:insert 插入元素并不会导致迭代器失效,例如:相较于 vector 中的 insert,list 中的 insert 并不会去扩容挪动数据,而 vector 中的 insert 可能会进行扩容挪动数据,最终导致迭代器失效。list 中的删除元素接口会导致迭代器失效,失效的只有指向被删除节点的迭代器,其他迭代器不会受到影响。

1.2.6 list operation(对链表的一些操作)

函数声明接口说明
reverse对链表进行逆置
sort对链表中的元素进行排序(稳定排序)
merge对两个有序的链表进行归并,得到一个有序的链表
unique对链表中的元素去重
remove删除具有特定值的节点
splice将 A 链表中的节点转移到 B 链表

小Tips:链表逆置可以使用 list 自身的接口,也可以使用算法库中的 reverse,二者没有什么区别。链表排序只能使用 list 自身的 sort() 接口(底层是利用归并排序),不能使用算法库的 sort,因为算法库中的 sort 底层是通过快排来实现的,而快排中会涉及到三数取中需要迭代器 - 迭代器,链表不能很好的支持。虽然链表提供了排序接口,但是用链表对数据排序意义不大,效率太低了,更希望用 vector 来对数据进行排序。

void TestSort()
{srand(time(0));const int N = 5000000;vector<int> v;list<int> l;v.reserve(N);//提前开好空间for (int i = 0; i < N; i++){auto e = rand();v.push_back(e);l.push_back(e);}//开始比较vector 和 list 的排序int begin1 = clock();sort(v.begin(), v.end());int end1 = clock();int begin2 = clock();l.sort();int end2 = clock();printf("vector sort:%d\n", end1 - begin1);printf("list sort:%d\n", end2 - begin2);
}

在这里插入图片描述

扩展:可以从功能角度对迭代器分为以下 3 类:

迭代器类型功能
单向(InputIterator)支持 ++
双向(BidirectionalItreator)支持 ++/- -
随机(RandomAccessIterator)支持 ++ / - - / + / -

其中 forward_listunordered_xxx 都是单向迭代器;listmapset 都是双向迭代器;vectorstringdeque 都是随机迭代器。对迭代器的这种分类方式,是由容器的底层结构来决定的。

二、list的模拟实现

2.1 list的节点

template<class T>
struct ListNode
{ListNode<T>* _next;ListNode<T>* _prev;T _val;ListNode(const T& val = T()){_next = nullptr;_prev = nullptr;_val = val;}
};

2.2 list的成员变量

class list
{typedef ListNode<T> Node;
public://一些成员函数
private:Node* _head;
}

小Tips:typedef 会受到访问限定符的限制,这里没写默认是 private,意味着 Node 这个类型只能在 list 这个类里面使用。链表本质上是一种数据结构,我们只需要维护好一个链表的头节点即可,所以 list 的成员变量就只有一个头节点的指针。

2.3 list的迭代器

list 的迭代器不能再使用原生指针,如果 list 的迭代器使用原生指针的话,那对迭代器解引用得到的是一个节点,而我们希望对迭代器解引用可以得到节点里面存储的元素,并且 list 在底层的物理空间并不连续,如果使用原生指针作为 list 的迭代器,那对迭代器执行 ++ 操作,并不会让迭代器指向下一个节点。因此我们需要对 list 的迭代器进行封装,然后将一些运算符进行重载,以实现迭代器本该有的效果。

2.3.1 普通迭代器

template<class T>
struct _list_iterator
{typedef ListNode<T> Node;Node* _node;_list_iterator(Node* val){_node = val;}T& operator* (){return _node->_val;}T* operator-> ()//迭代器通过->应该指向节点中的元素,因此返回的是一个T类型的地址{return &(_node->_val);}bool operator!= (const _list_iterator<T>& right){return _node != right._node;}_list_iterator<T> operator++(){_node = _node->_next;return *this;}_list_iterator<T> operator++(int){_list_iterator<T> tmp(this->_node);_node = _node->_next;return tmp;}
};

小Tips:这里的类名不能直接叫 iterator,因为每种容器的迭代器底层实现可能都有所不同,即可能会为每一种容器都单独实现一个迭代器类,如果都直接使用 iterator,会导致命名冲突。其次,迭代器类不需要我们自己写析构函数、拷贝构造函数、赋值运算符重载函数,直接使用默认生成的就可以,言外之意就是这里使用浅拷贝即可,因为迭代器只是一种工具,它不需要对资源进行释放清理,资源释放清理工作是在容器类中实现的,浅拷贝的问题就出在会对同一块空间释放两次,而迭代器无需对空间进行释放,所以浅拷贝是满足我们需求的。

2.3.2 const 迭代器

上面我们实现了普通迭代器,那 const 迭代器该如何实现呢?直接在容器类里面写上一句 typedef const _list_iterator<T> const_iterator 可以嘛?答案是不可以,const 迭代器本质是限制迭代器指向的内容不能修改,而 const 迭代器自身可以修改,它可以指向其他节点。前面这种写法,const 限制的就是迭代器本身,会让迭代器无法实现 ++ 等操作。那如何控制迭代指向的内容不能修改呢?可以通过控制 operator* 的返回值来实现。但是仅仅只有返回值类型不同,是无法构成函数重载的。那要怎样才能在一个类里面实现两个 operator* 让他俩一个返回普通的 T&,一个返回 const T& 呢?一般人可能想着那就再单独写一个 _list_const_iterator 的类,这样也行,就是会比较冗余,我们可以通过在普通迭代器的基础上,再传递一个模板参数,让编译器来帮们生成呀。除此之外, operator->也需要实现 const 版本,因此还需要第三个模板参数。

template<class T,class Ref, class Ptr>
struct _list_iterator
{typedef ListNode<T> Node;typedef _list_iterator<T, Ref, Ptr> self;Node* _node;_list_iterator(Node* val){_node = val;}Ref operator* (){return _node->_val;}Ptr operator-> (){return &(_node->_val);}bool operator!= (const self& right) const{return _node != right._node;}bool operator== (const self& right) const{return _node == right._node;}self operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(this->_node);_node = _node->_next;return tmp;}self operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}
};
//operator->的使用场景
struct A
{A(int a = 0, int b = 0){_a = a;_b = b;}int _a;int _b;
};void Textlist3()
{wcy::list<A> l;l.push_back(A(1, 2));l.push_back(A(3, 4));l.push_back(A(5, 6));l.push_back(A(7, 8));wcy::list<A>::iterator it = l.begin();while (it != l.end()){cout << it->_a << ',' << it->_b << " ";cout << endl;it++;}
}

小Tips:上面代码中的 it->_a 会去调用 operator->,返回一个 A 类型的指针,所以这里应该是两个 ->,即 it->->_a ,但是编译器进行了优化,只需要一个 -> 即可。

2.4 list的成员函数

2.4.1 构造函数

list()
{_head = new Node;_head->_prev = _head;_head->_next = _next;
}

小Tips:list 本质上是一个带头双向循环链表。

2.4.2 拷贝构造函数

list(const list& ll)
//list(const list<T>& ll)
{_head = new Node;_head->_prev = _head;_head->_next = _head;for (auto& e : ll){push_back(e);}
}

2.4.3 赋值运算符重载

void swap(list<T> l2)
{std::swap(_head, l2._head);
}list& operator=(const list ll)
//list<T>& operator=(const list<T> ll)
{//现代写法swap(ll);return *this;
}

小Tips:构造函数和赋值运算符重载函数的形参和返回值类型可以只写类名 list,无需写完整的类型 list<T>,但是不推荐这样写,容易造成混淆,其次现代写法和常规写法在效率上没有任何区别,只是将本来需要我们做的事情交给了编译器去做。

2.4.4 push_back

void push_back(const T& val)
{//先找尾Node* tail = _head;while (tail->_next != _head){tail = tail->_next;}//插入元素Node* newnode = new Node(val);tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;
}

2.4.5 迭代器相关

iterator begin()
{return _head->_next;//单参数的构造函数支持隐式类型转换
}iterator end()
{return _head;
}const_iterator begin() const
{return _head->_next;//单参数的构造函数支持隐式类型转换
}const_iterator end() const
{return _head;
}

2.4.6 insert

iterator insert(iterator pos, const T& val)
{//找到 pos 位置的前一个位置Node* cur = pos._node;Node* prev = cur->_prev;//插入元素Node* newnode = new Node(val);prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;return newnode;
}

2.4.7 erase

iterator erase(iterator pos)
{assert(pos != end());Node* cur = pos._node;//保存当前节点Node* prev = cur->_prev;//保存前一个节点Node* next = cur->_next;//保存后一个节点prev->_next = next;next->_prev = prev;delete cur;cur = nullptr;return next;
}

2.4.8 push_front

void push_front(const T& val)
{insert(begin(), val);
}

2.4.9 pop_back

void pop_back()
{erase(--end());
}

2.4.10 pop_front

void pop_front()
{erase(begin());
}

2.4.11 size

size_t size()
{size_t sz = 0;iterator it = begin();while (it != end()){it++;sz++;}return sz;
}

2.4.12 clear

void clear()
{iterator it = begin();while (it != end()){it = erase(it);}
}

2.4.13 析构函数

~list()
{clear();delete _head;_head = nullptr;
}

小Tips:clear 和 析构函数的主要区别在于是否释放头节点。

三、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!

在这里插入图片描述

相关文章:

【C++杂货铺】探索list的底层实现

文章目录 一、list的介绍及使用1.1 list的介绍1.2 list的使用1.2.1 list的构造1.2.2 list iterator的使用1.2.3 list capacity&#xff08;容量相关&#xff09;1.2.4 list element access&#xff08;元素访问&#xff09;1.2.5 list modifiers&#xff08;链表修改&#xff0…...

NX/UG二次开发—Parasolid—PK_BODY_pick_topols

最近在写一个判断圆孔深度和通盲状态的功能&#xff0c;发现PK_BODY_pick_topols射线函数可以设置到射线垂直距离&#xff0c;相当于一个圆柱空间&#xff0c;但在测试发现&#xff0c;R7的孔&#xff0c;设置&#xff1a; max_edge_dist 0.007; max_vertices 0.007; 结果测…...

【校招VIP】前端算法考点之大数据相关

考点介绍&#xff1a; 大数据的关键技术分为分析技术和处理技术&#xff0c;可用于大数据分析的关键技术主要包括A/B测试&#xff0c;关联规则挖掘&#xff0c;数据挖掘&#xff0c;集成学习&#xff0c;遗传算法&#xff0c;机器学习&#xff0c;自然语言处理&#xff0c;模式…...

Goland2023版新UI的debug模式调试框按钮功能说明

一、背景 Jetbrains家的IDE的UI基本都是一样的&#xff0c;debug模式的调试框按钮排列也是一致的&#xff0c;但是在我使用Goland2023版的新UI时&#xff0c;发现调试框的按钮变化还是很大的&#xff0c;有一些按钮被收起来了&#xff0c;如果看之前的博客会发现有一些文中的旧…...

【AIGC专题】Stable Diffusion 从入门到企业级应用0414

一、前言 本文是《Stable Diffusion 从入门到企业级应用实战》系列的第四部分能力进阶篇《Stable Diffusion ControlNet v1.1 图像精准控制》的第0414篇 利用Stable Diffusion ControlNet 法线贴图模型精准控制图像生成。本部分内容&#xff0c;位于整个Stable Diffusion生态体…...

汇编原理学习记录:物理地址=段地址*16+偏移地址

文章目录 知识点个人思考解释存储器大小为1MB段的最大占用存储为64KB物理地址段地址*16偏移地址 知识点 8086计算机拥有20根地址总线和16根数据总线&#xff0c;地址总线中的16根和数据总线存在复用 数据总线的数量决定了数据总线的宽度&#xff0c;决定了处理器的位数&#…...

mysql-2:安装mysql

MySQL安装 操作系统&#xff1a;CentOS 7MySQL&#xff1a;5.6 MySQL的卸载 查看MySQL软件 rpm -qa | grep mysqlyum repolist all | grep mysql 卸载MySQL 卸载mysql yum remove -y mysql mysql-libs mysql-common删除mysql下的数据文件 rm -rf /var/lib/mysql删除mys…...

gin框架

【狂神说】Gin框架一小时上手 | 快速转型GoWeb开发 | Go语言零基础教程_哔哩哔哩_bilibili 1.介绍 2.简单程序 1&#xff09;gin.GET/POST/PUT/DELETE函数 Go Gin 简明教程 | 快速入门 | 极客兔兔 (geektutu.com) 我的理解是&#xff1a;这类函数就像是在监听接口一样&…...

Laravel 完整开源项目大全

原型项目 Laravel 5 Boilerplate —— 基于当前Laravel最新版本&#xff08;Laravel 6.0&#xff09;并集成Boilerplate的项目Laravel 5 Angular Material Starter —— 这是一个 Laravel 和 AngularJS 的原型项目&#xff08;最高支持版本&#xff1a;5.3&#xff0c;长期未更…...

Spring MVC @Controller和@RequestMapping注解

Controller 注解 Controller 注解可以将一个普通的 Java 类标识成控制器&#xff08;Controller&#xff09;类&#xff0c;示例代码如下。 package net.biancheng.controller; import org.springframework.stereotype.Controller; Controller public class IndexController …...

软件架构之前后端分离架构服务器端高并发演进之路

软件架构之前后端分离架构&服务器端高并发演进之路 前后端分离架构从业务角度从质量属性从性能角度 服务器端关于不同并发量的演进之路1. 单体架构2. 第一次演进&#xff1a;应用服务器和数据库服务器分开部署3. 第二次演进&#xff1a;引入本地缓存和分部署缓存4. 第三次演…...

第4节-PhotoShop基础课程-Ps格式

文章目录 前言1.像素认识2. 图层认识1.图层有上下前后遮挡关系2.橡皮檫可以擦掉选择图层的像素3.新建图层4.新建删除图层 3. 分辨率的理解4. 图片格式A 前言 本章主要介绍PS常用格式 1.像素认识 下面每个格子就是像素 2. 图层认识 1.图层有上下前后遮挡关系 2.橡皮檫可以擦…...

C语言malloc函数学习

malloc的全称是memory allocation&#xff0c;中文叫动态内存分配&#xff0c;用于申请一块连续的指定大小的内存块区域&#xff0c;以void*类型返回分配的内存区域地址&#xff1b; 函数原型为void *malloc(unsigned int size)&#xff0c;在内存的动态存储区中分配一个长度为…...

从零开始学习deepsort目标追踪算法----原理和代码详解

目录 1.目标追踪的主要步骤 2、传统sort算法的流程 3.Deepsort算法流程 4、目标追踪整体代码 4.1 Configs文件目录下&#xff1a; 4.2 deep_sort/deep_sort/deep目录下&#xff1a; 4.3 deep_sort/deep_sort/sort目录下&#xff1a; 运行demo&#xff1a; DeepSORT&…...

第三章 LInux多线程开发 3.1-3.5线程创建 终止 分离

创建线程&#xff1a;&#xff08;好好记住 可能会叫写代码&#xff09; 一般情况下,main函数所在的线程我们称之为主线程&#xff08;main线程&#xff09;&#xff0c;其余创建的线程称之为子线程。 程序中默认只有一个进程&#xff0c;fork()函数调用&#xff0c;2进行 程序…...

空间曲线的参数方程

空间曲线的参数方程 二维直线 经过一点 P ( x 0 &#xff0c; y 0 ) P(x_0&#xff0c;y_0) P(x0​&#xff0c;y0​)的方向向量为 n ( c o s θ &#xff0c; s i n θ ) n(cos\theta&#xff0c;sin\theta) n(cosθ&#xff0c;sinθ)的直线参数方程为&#xff1a; [ x y …...

非华为机型如何体验HarmonyOS鸿蒙系统 刷写HarmonyOS鸿蒙GSI系统以及一些初步的bug修复

最近很多视频网站有非华为机型使用HarmonyOS鸿蒙系统的演示。其实大都是刷了HarmonyOS鸿蒙系统gsi系统。体验还可以。有些刷入后bug较多。那么这些机型是如何刷写gsi&#xff1f;可以参考我以往帖子 安卓玩机搞机-----没有第三方包 刷写第三方各种GSI系统 体验非官方系统_gsi刷…...

Flutter 生成小程序的混合 App 实践

一、背景 微信小程序发展的越来越快,目前小程序甚至取代了大部分 App 的生态位,公司的坑位不增反降,只能让原生应用开发兼顾或换岗进行小程序的开发。 以我的实际情况来讲,公司应用采用的 Flutter 框架,同样的功能不可避免的就会存在 Flutter 应用开发和微信小程序开发兼…...

利用 Python-user-agents 解析 User_Agent

利用 Python-user-agents 解析 User_Agen 需求分析 近期在尝试做一个登录日志的功能&#xff0c;及用户登录成功后我在后台进行一个用户的登录记录&#xff0c;两种解决方案&#xff1a; 由前端得到用户的手机型号&#xff0c;我在后台接收后在数据库进行保存使用User_Agent…...

Java版企业电子招标采购系统源码Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看…...

Mybatis如何给字段起别名?

Mybatis如何给字段起别名&#xff1f; 假如有一个学生表&#xff0c;有一个字段是class&#xff0c;你的实体类变量肯定不能用class&#xff0c;那么如何起别名&#xff1f; 通过以下代码实现 Result(column "class",property "clas")mapper代码 pub…...

php对接AWS S3云存储,上传S3及访问权限问题

首先先下载sdk包 https://docs.aws.amazon.com/zh_cn/sdk-for-php/v3/developer-guide/getting-started_installation.html S3创建存储桶 去安全凭证-》创建访问秘钥 创建的时候会提示&#xff0c;主账号创建不安全&#xff0c;这个时候我们需要创建一个IAM账号来创建秘钥 创…...

java 实现单例模式

单例模式是一种设计模式&#xff0c;用于确保一个类只有一个实例&#xff0c;并提供一种全局访问该实例的方式。在Java中&#xff0c;可以使用多种方式来实现单例模式&#xff0c;下面整理了几种常见的实现方式。 饿汉式单例模式&#xff08;Eager Initialization&#xff09;&…...

minio文件服务器开启https

一、准备证书 你要有https安全证书&#xff0c;我的是适用于nginx的证书 私钥 xxxx.key 公钥 xxxx.pem 二、上传证书到minio服务器 然后看看你的minio docker 有没有把 /root/.minio 挂载在主机上&#xff0c;如果有那么把两个证书文件放在/root/.minio/certs目录里面。…...

每日刷题(回溯法经典问题之子集)

食用指南&#xff1a;本文为作者刷题中认为有必要记录的题目 前置知识&#xff1a;回溯法经典问题之组合 ♈️今日夜电波&#xff1a;想着你—郭顶 1:09 ━━━━━━️&#x1f49f;──────── 4:15 …...

PostgreSQL在进行除法时要注意

背景 整型除以整型&#xff0c;正常情况下当然得到的应该也是整型。数据库也是这么干的。 但是在数据库应用中&#xff0c;通常业务的需求是得到NUMERIC&#xff0c;不能直接把小数干掉。 数据库的行为给用户带来了诸多不便&#xff0c;例如1除以2&#xff0c;如果是整型除法会…...

开开心心带你学习MySQL数据库之第五篇

&#x1f63a;欢迎来到我的博客, 记得点赞&#x1f44d;收藏⭐️留言✍️&#x1f431; &#x1f409;做为一个怪兽&#xff0c;我的目标是少消灭一个奥特曼&#x1f409; &#x1f4d6;希望我写的博客对你有所帮助,如有不足,请指正&#x1f4d6; chatgpt 是否能够代替程序猿?…...

Geotools对geojson的解析

在 GeoTools 中&#xff0c;对 GeoJSON 的支持是通过一个插件来完成的&#xff0c;用户同样可以在 Maven 的 pom.xml 配置文件中添加下述的依赖。 <dependency><groupId>org.geotools</groupId><artifactId>gt-geojson</artifactId><version&…...

【博客701】shell实现保留网络现场:ping失败时执行mtr

shell实现保留网络现场&#xff1a;ping失败时执行mtr 场景 当我们网络出现抖动&#xff0c;到某个目的地ping不通时&#xff0c;我们想知道路径上哪里出现问题时可以在那时候执行mtr并保留下现场以供排查 实现&#xff1a;ping_and_mtr.sh #!/bin/bash# 定义要ping的IP地址列…...

放弃手写代码吧!用低代码你能生成各种源码

很多同学不知道为什么要用Low-code做开发&#xff0c;传统IT开发不行么&#xff1f;当然可以。 传统IT自研软件开发&#xff0c;通过编程去写代码&#xff0c;还有数据库、API、第三方基础架构等。这个方式很好&#xff0c;但不可避免的会带来开发周期长、难度大&#xff0c;技…...