当前位置: 首页 > news >正文

2023高教社杯国赛数学建模C题思路+模型+代码(9.7晚开赛后第一时间更新)

目录

1.C题思路模型:9.7晚上比赛开始后,第一时间更新,获取见文末名片

2.竞赛注意事项:包括比赛流程,任务分配,时间把控,论文润色,已经发布在文末名片中

3.常用国赛数学建模算法 

3.1 分类问题

3.2 优化问题

4.获取赛题思路模型见此名片


1.C题思路模型:9.7晚上比赛开始后,第一时间更新,获取见文末名片

2.竞赛注意事项:包括比赛流程,任务分配,时间把控,论文润色,已经发布在文末名片中

3.常用国赛数学建模算法 

3.1 分类问题


判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

3.2 优化问题


线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

4.获取赛题思路模型见此名片

相关文章:

2023高教社杯国赛数学建模C题思路+模型+代码(9.7晚开赛后第一时间更新)

目录 1.C题思路模型:9.7晚上比赛开始后,第一时间更新,获取见文末名片 2.竞赛注意事项:包括比赛流程,任务分配,时间把控,论文润色,已经发布在文末名片中 3.常用国赛数学建模算法 …...

QT6中添加串口模块SerialPort最简单方法

qt6.2.3以上版本已经开始支持SerialPort包了,不用在傻傻的自己去编译包了。 在安装的时候勾选SerialPort即可。 等着安装完即可。 如果已经安装完了的小伙伴,可以用 从新打开维护 选择增加或者删除组件 即可从新选择组件...

LeetCode每日一题:1123. 最深叶节点的最近公共祖先(2023.9.6 C++)

目录 1123. 最深叶节点的最近公共祖先 题目描述: 实现代码与解析: dfs 原理思路: 1123. 最深叶节点的最近公共祖先 题目描述: 给你一个有根节点 root 的二叉树,返回它 最深的叶节点的最近公共祖先 。 回想一下&…...

Oracle查看锁表和正在执行的Sql

查看当前被锁的表(需要有管理员权限): --查看锁表进程SQL语句1: select sess.sid,sess.serial#,lo.oracle_username,lo.os_user_name,ao.object_name,lo.locked_modefrom v$locked_object lo, dba_objects ao, v$session sesswh…...

Linux centos 卸载 ceph

在CentOS上卸载Ceph的操作步骤: 1. 停止Ceph集群:首先,你需要停止Ceph集群中的所有服务。在每个节点上运行以下命令来停止所有服务 systemctl stop ceph.target 2. 卸载Ceph软件包:在每个节点上,使用yum包管理器卸载C…...

ElementUI浅尝辄止34:Radio 单选框

在一组备选项中进行单选 1.如何使用? 由于选项默认可见,不宜过多,若选项过多,建议使用 Select 选择器。 //要使用 Radio 组件,只需要设置v-model绑定变量,选中意味着变量的值为相应 Radio label属性的值&…...

开始MySQL之路——MySQL三大日志(binlog、redo log和undo log)概述详解

前言 MySQL实现事务、崩溃恢复、集群的主从复制,底层都离不开日志,所以日志是MySQL的精华所在。只有了解MySQL日志,才算是彻底搞懂MySQL。 日志是mysql数据库的重要组成部分,记录着数据库运行期间各种状态信息。mysql日志主要包…...

router基础使用

1.安装router npm i vue-router3 安装后 2.写出路由界面 接着 3.配置路由 import Vue from vue import VueRouter from vue-router import Home from "../views/Home.vue" import About from "../views/About.vue" Vue.use(VueRouter)const routes …...

亚马逊云科技人工智能内容审核服务:大大降低生成不安全内容的风险

生成式人工智能技术发展日新月异,现在已经能够根据文本输入生成文本和图像。Stable Diffusion是一种文本转图像模型,可以创建栩栩如生的图像应用。通过Amazon SageMaker JumpStart,使用Stable Diffusion模型轻松地从文本生成图像。 尽管生成式…...

2023年高教社杯数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 最短时…...

算法工程题(二叉树递归)

* 题意说明: * 给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。 * 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。 * * 示例 1: * 输入:p [1,2,3]…...

“指针跃动”受邀参加全球贸易服务峰会

“指针跃动”受邀参加全球贸易服务峰会 有“服”同享 共赢未来 引子 在全球化日益盛行的今天,贸易不再仅仅是物质的交流,更涉及到服务、理念、文化和科技的共享。中国国际服务贸易交易会全球贸易服务峰会,就是这个趋势的集中体现。在这次峰会…...

Go Web开发的高级技巧和最佳实践

Go Web开发的高级技巧和最佳实践 欢迎来到Go语言Web开发的高级技巧和最佳实践指南。在这篇文章中,我们将深入探讨Go语言Web应用程序的高级主题,包括性能优化、安全性、部署和微服务架构。 性能优化 性能是Web应用程序的关键因素之一。Go语言以其出色的…...

Verilog 基础知识

1、数值种类 Verilog HDL 有下列四种基本的值来表示硬件电路中的电平逻辑: 0:逻辑 0 或 “假”1:逻辑 1 或 “真”x 或 X:未知 x 意味着信号数值的不确定,即在实际电路里,信号可能为 1,也可能…...

element ui 表格组件与分页组件的二次封装

目录 组件封装 parseTime函数 debounce 函数 页面使用 【扩展】vue 函数式组件 函数式组件特点: 函数式组件的优点: 【扩展】vue中的render函数 一、初步认识render函数 二、为什么使用render函数 三、render函数的解析 组件封装 这段代码是一…...

递归算法学习——有效的数独,解数独

一,有效的数独 1.题意 请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&#x…...

基于Alexnet深度学习网络的人员口罩识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 file_path1 test\mask\;% 图像文件夹路径 %获取测试图像文件夹下所有jpg格式的图像文件…...

【Java Web】利用Spring整合Redis,配置RedisTemplate

1. 在config中加入RedisConfig配置类 package com.nowcoder.community.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.connection.RedisConnectionFacto…...

如何正确的写出第一个java程序:hello java

1 前言 最近公司由于项目需要,开始撸java代码了。学习一门新的编程语言,刚开始总是要踩很多坑,所以记录一下学习过程,也希望对java初学者有所帮助。 2 hello java 2.1 程序源码 程序内容十分简单,这里就不再过多赘…...

使用llvm 编译最新的linux 内核(LoongArch)

1. 准备交叉工具链 llvm 使用了最新的llvm-17, 编译方法见:编译LoongArch的llvm交叉工具链 gcc 从linux 官方下载:http://mirrors.edge.kernel.org/pub/tools/crosstool/files/bin/x86_64/13.2.0/x86_64-gcc-13.2.0-nolibc-loongarch64-linux.tar.xz 发布llvm和g…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...