【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[2]【Matlab代码#58】
文章目录
- 【`获取资源`请见文章第5节:资源获取】
- 1. 原始POA算法
- 2. 改进后的IPOA算法
- 2.1 随机对立学习种群初始化
- 2.2 动态权重系数
- 2.3 透镜成像折射方向学习
- 3. 部分代码展示
- 4. 仿真结果展示
- 5. 资源获取
【获取资源
请见文章第5节:资源获取】
1. 原始POA算法
此算法详细介绍请参考POA算法介绍
2. 改进后的IPOA算法
2.1 随机对立学习种群初始化
采用随机方法初始化POA种群,生成的种群不均匀,影响了收敛速度和精度。为了获得更好的初始种群,本文采用了随机对立学习策略来进行种群初始:
X i , n e w = ( l + u ) − k X i (1) X_{i,new}=(l+u)-kX_{i}\tag1 Xi,new=(l+u)−kXi(1)
其中, X i X_{i} Xi为原解, X i , n e w X_{i,new} Xi,new为随机对立学习生成的反向解, k k k为[0,1]之间的随机数。
经过随机对立学习策略后,生成了 N N N个反向解,如果反向解的适应度值优于原解,就用反向解替代原解,否则保留原解。
2.2 动态权重系数
基本鹈鹕优化算法的开发阶段,在迭代后期会存在陷入局部最优的情况,使搜索失败。为克服这一弊端,再在其位置更新公式中加入动态权重系数 ω,让它在迭代初期具有较大值,促进全局搜索,迭代后期自适应变小,促进局部搜索并加快收敛速度。
2.3 透镜成像折射方向学习
透镜成像折射反向学习策略的思想来自于凸透镜成像的原理。通过基于当前坐标生成一个反向位置来扩展搜索范围,如图1所示。
在二维坐标中,x轴的搜索范围为(a, b), y轴表示一个凸透镜。假设物体A在x轴上的投影为x,高度为h,通过透镜成像,另一侧的图像为A*, A在x轴上的投影为x,高度为h*。通过以上分析,我们可以得到如下公式:
( a + b ) / 2 − x x ∗ − ( a + b ) / 2 = h h ∗ (2) \frac{(a+b)/2-x}{x^{*}-(a+b)/2 }=\frac{h}{h^{*}} \tag2 x∗−(a+b)/2(a+b)/2−x=h∗h(2)
对公式(2)进行转换,即可得到反向解x*的表达式为:
x ∗ = a + b 2 + a + b 2 k − x k (3) x^{*} =\frac{a+b}{2}+\frac{a+b}{2k}-\frac{x}{k} \tag3 x∗=2a+b+2ka+b−kx(3)
其中, k = h / h ∗ k=h/h^{*} k=h/h∗, a a a和 b b b可以视为某维度的上下限。本文中的 k k k是一个与迭代次数相关的动态自适应值。
3. 部分代码展示
%%
clc
clear
close all%%
Fun_name='F1'; % number of test functions: 'F1' to 'F23'
SearchAgents=30; % number of Pelicans (population members)
Max_iterations=500; % maximum number of iteration
[lb,ub,dim,fobj]=Get_Functions_details(Fun_name); % Object function information
[Best_score_POA,Best_pos_POA,POA_curve]=POA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_SSA,Best_pos_SSA,SSA_curve]=SSA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_WOA,Best_pos_WOA,WOA_curve]=WOA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_GWO,Best_pos_GWO,GWO_curve]=GWO(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_IPOA,Best_pos_IPOA,IPOA_curve]=IPOA(SearchAgents,Max_iterations,lb,ub,dim,fobj);%%
figure('Position',[454 445 694 297]);
subplot(1,2,1);
func_plot(Fun_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Fun_name,'( x_1 , x_2 )'])subplot(1,2,2);
t = 1:Max_iterations;
semilogy(t, POA_curve, 'b-', t, SSA_curve, 'k-', t, WOA_curve, 'g-', t, GWO_curve, 'm-', t, IPOA_curve, 'r-','linewidth', 1.5);title(Fun_name)
xlabel('Iteration');
ylabel('Best fitness function');
axis tight
legend('POA','SSA','WOA','GWO','IPOA')display(['The best solution obtained by POA for ' [num2str(Fun_name)],' is : ', num2str(Best_pos_POA)]);
display(['The best optimal value of the objective funciton found by POA for ' [num2str(Fun_name)],' is : ', num2str(Best_score_POA)]);
display(['The best solution obtained by SSA for ' [num2str(Fun_name)],' is : ', num2str(Best_pos_SSA)]);
display(['The best optimal value of the objective funciton found by SSA for ' [num2str(Fun_name)],' is : ', num2str(Best_score_SSA)]);
display(['The best solution obtained by WOA for ' [num2str(Fun_name)],' is : ', num2str(Best_pos_WOA)]);
display(['The best optimal value of the objective funciton found by WOA for ' [num2str(Fun_name)],' is : ', num2str(Best_score_WOA)]);
display(['The best solution obtained by GWO for ' [num2str(Fun_name)],' is : ', num2str(Best_pos_GWO)]);
display(['The best optimal value of the objective funciton found by GWO for ' [num2str(Fun_name)],' is : ', num2str(Best_score_GWO)]);
display(['The best solution obtained by IPOA for ' [num2str(Fun_name)],' is : ', num2str(Best_pos_IPOA)]);
display(['The best optimal value of the objective funciton found by IPOA for ' [num2str(Fun_name)],' is : ', num2str(Best_score_IPOA)]);
4. 仿真结果展示
5. 资源获取
可以获取完整代码资源。
相关文章:
![](https://img-blog.csdnimg.cn/2c62c13810eb4d428160d4708fa1f9c5.png#pic_center)
【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[2]【Matlab代码#58】
文章目录 【获取资源请见文章第5节:资源获取】1. 原始POA算法2. 改进后的IPOA算法2.1 随机对立学习种群初始化2.2 动态权重系数2.3 透镜成像折射方向学习 3. 部分代码展示4. 仿真结果展示5. 资源获取 【获取资源请见文章第5节:资源获取】 1. 原始POA算法…...
![](https://img-blog.csdnimg.cn/img_convert/5ac784f572fe044c9fdce3befdd755b2.png)
k8s 入门到实战--部署应用到 k8s
k8s 入门到实战 01.png 本文提供视频版: 背景 最近这这段时间更新了一些 k8s 相关的博客和视频,也收到了一些反馈;大概分为这几类: 公司已经经历过服务化改造了,但还未接触过云原生。公司部分应用进行了云原生改造&…...
![](https://www.ngui.cc/images/no-images.jpg)
编程语言新特性:instanceof的改进
以前也写过类似的博文,可能重复。 要判断一个对象是哪个类或父类的实例,JAVA用到instanceof,其实语言也有类似语法。而类一般是多层继承的,有时就让人糊涂。所以我提出改进思路: instanceof:保持不变。ins…...
![](https://img-blog.csdnimg.cn/6878ddea334343559630a04151d5a995.png)
数据挖掘的学习路径
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...
逻辑回归Logistic
回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程。 最后结果用sigmoid函数输出 因此,为了实现 Logisti…...
![](https://img-blog.csdnimg.cn/08915ffcb6eb481e847960b8db4cdcf8.png)
Flink提交jar出现错误RestHandlerException: No jobs included in application.
今天打包一个flink的maven工程为jar,通过flink webUI提交,发现居然报错。 如上图所示,提示错误为: Server Response Message: org.apache.flink.runtime.rest.handler.RestHandlerException: No jobs included in application. …...
![](https://www.ngui.cc/images/no-images.jpg)
【数仓基础(一)】基础概念:数据仓库【用于决策的数据集合】的概念、建立数据仓库的原因与好处
文章目录 一. 数据仓库的概念1. 面向主题2. 集成3. 随时间变化4. 非易失粒度 二. 建立数据仓库的原因三. 使用数据仓库的好处 一. 数据仓库的概念 数据仓库的主要作用: 数据仓库概念主要是解决多重数据复制带来的高成本问题。 在没有数据仓库的时代,需…...
![](https://img-blog.csdnimg.cn/91c450005acd45f7959a6f9371e45e17.png)
电商类面试问题--01Elasticsearch与Mysql数据同步问题
在实现基于关键字的搜索时,首先需要确保MySQL数据库和ES库中的数据是同步的。为了解决这个问题,可以考虑两层方案。 全量同步:全量同步是在服务初始化阶段将MySQL中的数据与ES库中的数据进行全量同步。可以在服务启动时,对ES库进…...
![](https://img-blog.csdnimg.cn/4feaca534d3d48ca9485ec349410ed1d.png)
天线材质介绍--FPC天线
...
![](https://www.ngui.cc/images/no-images.jpg)
vue3 的 ref、 toRef 、 toRefs
1、ref: 对原始数据进行拷贝。当修改 ref 响应式数据的时候,模版中引用 ref 响应式数据的视图处会发生改变,但原始数据不会发生改变 <template><div>{{refA}}</div> </template><script lang"ts" setup> impor…...
![](https://img-blog.csdnimg.cn/ebbfe72eff9748c79102681c45488ca7.png)
WebRTC中 setup:actpass、active、passive
1、先看一下整个DTLS的流程 setup:actpass、active、passive就发生在Offer sdp和Anser SDP中 Offer的SDP是setup:actpass,这个是服务方: v0\r o- 1478416022679383738 2 IN IP4 127.0.0.1\r s-\r t0 0\r agroup:BUNDLE 0 1\r aextmap-allow-mixed\r amsid-semanti…...
![](https://img-blog.csdnimg.cn/adeaa8e2146645579e32e11cfc202623.png#pic_center)
ModuleNotFoundError: No module named ‘lavis‘解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
![](https://www.ngui.cc/images/no-images.jpg)
双指针的问题解法以及常见的leetcode例题。
目录 介绍: 问题1:双指针 剑指offer57 和为S的两个数字。 问题2:剑指Offer 21. 调整数组顺序使奇数位于偶数前面 问题3:连续奇数子串(笔试遇到的真题) 问题4:滑动窗口的最大值 介绍&#…...
![](https://www.ngui.cc/images/no-images.jpg)
python容器模块Collections
Python附带一个模块,它包含许多容器数据类型,名字叫作collections defaultdict defaultdict与dict类型不同,你不需要检查key是否存在,所以我们能这样做: from collections import defaultdict colours ((Yasoob, Y…...
![](https://img-blog.csdnimg.cn/098035b0201c459f959b6bccce6e9555.png)
排序算法学习记录-快速排序
快速排序 快速排序关键在于确定一个中间值,使得小于这个中间值的数在左边,大于这个中间值的数在右边。那么中间值该如何确定呢?有以下几种做法 首元素,也就是arr[l]尾元素,也就是arr[r]中间元素,也就是ar…...
![](https://www.ngui.cc/images/no-images.jpg)
安装windows版本的ros2 humble的时候,最后报错
"[rti_connext_dds_cmake_module][warning] RTI Connext DDS environment script not found (\resource\scripts\rtisetenv_x64Win64VS2017.bat). RTI Connext DDS will not be available at runtime, unless you already configured PATH manually." 意思是没找到。…...
![](https://img-blog.csdnimg.cn/bcd67571e80c48cfa5449e6486c171cd.png)
Nginx 学习(十)高可用中间件的配置与实现
一 Keepalived热备 1 概述 调度器出现单点故障,如何解决?Keepalived实现了高可用集群Keepalived最初是为LVS设计的,专门监控各服务器节点的状态Keepalived后来加入了VRRP功能,防止单点故障 2 运行原理 Keepalived检测每个服务器节点状…...
![](https://img-blog.csdnimg.cn/cb21798a927c4ed2a3b29b1d8b7951ba.png)
[刷题记录]牛客面试笔刷TOP101
牛客笔试算法必刷TOP101系列,每日更新中~ 1.合并有序链表2023.9.3 合并两个排序的链表_牛客题霸_牛客网 (nowcoder.com) 题意大致为: 将两个链表中的元素按照从小到大的顺序合并成为一个链表. 所给予的条件: 给出的所要合并的链表都是从小到大顺序排列的. 思路: 创建一…...
![](https://www.ngui.cc/images/no-images.jpg)
降水预报之双重惩罚
在降水预报中,通常会出现 "双重惩罚问题 "的指标或度量包括那些常用于预报验证的指标或度量。当假阴性(漏报降水事件)和假阳性(误报)受到同等惩罚或加权时,就会出现双重惩罚问题,这在…...
![](https://www.ngui.cc/images/no-images.jpg)
一条SQL语句的执行过程(附一次两段式提交)
一条SQL语句的完整执行过程是怎样的呢?我们用select和update语句来举例。 注意在mysql8后,进入服务层后,取消了去查询缓存(属于Server服务层)这个步骤,缓存中key是SQL语句,value是值,这样其实并不会提升性…...
![](https://www.ngui.cc/images/no-images.jpg)
Python基础知识详解:数据类型、对象结构、运算符完整分析
文章目录 python基础知识数据类型类型检查对象(object)对象的结构变量和对象类型转换运算符(操作符)1. 算术运算符2. 赋值运算符3. 比较运算符(关系运算符)4. 逻辑运算符5. 条件运算符(三元运算符) 总结 py…...
![](https://img-blog.csdnimg.cn/62db932eca6745fea76ed11424b2cf92.png)
基于Streamlit的应用如何通过streamlit-authenticator组件实现用户验证与隔离
Streamlit框架中默认是没有提供用户验证组件的,大家在基于streamlit快速实现web应用服务过程中,不可避免的需要配置该应用的访问范围和权限,即用户群体,一般的做法有两种,一种是通过用户密码验证机制,要求只…...
![](https://csdnimg.cn/release/blog_editor_html/release2.3.6/ckeditor/plugins/CsdnLink/icons/icon-default.png?t=N7T8)
[虚幻引擎插件介绍] DTGlobalEvent 蓝图全局事件, Actor, UMG 相互回调,自由回调通知事件函数,支持自定义参数。
本插件可以在虚幻的蓝图 Actor, Obiect,UMG 里面指定绑定和执行消息,可带自定义参数。 参数支持 Bool,Byte,Int,Int64,Float,Name,String,Text,Ve…...
![](https://img-blog.csdnimg.cn/img_convert/ebe024bbe023690cece2079ff1d5a5ec.webp?x-oss-process=image/format,png)
2023数学建模国赛选题建议及BC题思路
大家好呀,全国大学生数学建模竞赛今天下午开赛啦,在这里先带来初步的选题建议及思路。 目前团队正在写B题和C题完整论文,后续还会持续更新哈,以下只是比较简略的图文版讲解,团队目前正在写B、C题完整论文,…...
![](https://img-blog.csdnimg.cn/455f70ae50be4620882a990883313012.png)
vue3:4、组合式API-setup选项
setup每次都要return,好麻烦。怎么解决? 使用 <script setup> 语法糖(底层帮你return了) 写法如下...
![](https://img-blog.csdnimg.cn/6c2ba5d6556546d5919b919baab74a2a.png)
【C刷题训练营】第三讲(c语言入门训练)
前言: 大家好,我决定日后逐渐更新c刷题训练营的内容,或许能帮到入门c语言的初学者,如果文章有错误,非常欢迎你的指正! 💥🎈个人主页:Dream_Chaser~ 🎈&…...
![](https://img-blog.csdnimg.cn/57f368af3399471d97c84c865288c939.png)
简述视频智能分析EasyCVR视频汇聚平台如何通过“AI+视频融合”技术规避八大特殊作业风险
视频智能分析EasyCVR视频汇聚平台可以根据不同的场景需求,让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上,视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储磁盘阵列、录…...
![](https://img-blog.csdnimg.cn/6c7e925c65d3452fa61297c1bad9e3d2.jpeg#pic_center)
2023年9月NPDP产品经理国际认证报名,找弘博创新
产品经理国际资格认证NPDP是新产品开发方面的认证,集理论、方法与实践为一体的全方位的知识体系,为公司组织层级进行规划、决策、执行提供良好的方法体系支撑。 【认证机构】 产品开发与管理协会(PDMA)成立于1979年,是…...
![](https://img-blog.csdnimg.cn/img_convert/e4cbb3646af8a56f71868e0544dab5a9.gif#pic_center)
【MySQL】MySQL的安装,登录,配置和相关命令
文章目录 前言一. 卸载不需要的环境二. 获取MySQL的yum源三. 安装MySQL和启动四. 尝试登录MySQL方法1:获取临时root密码方法2:没有密码方法3:配置文件 五. 简单配置结束语 前言 本篇文章是基于云服务器;Linux:Centos7…...
![](https://img-blog.csdnimg.cn/b0119873100f4d8b9b0eb56a8f141d9f.png)
攻防世界-WEB-php_rce
打开靶机链接 搜村ThinkPhP V5存在远程命令执行的漏洞 构建payload /index.php?sindex/think\app/invokefunction&functioncall_user_func_array&vars[0]system&vars[1][]ls 查询当前目录文件,没有发现flag。调整payload 得到flag文件,修…...
![](/images/no-images.jpg)
网站制作论文5000字/什么是seo
目录 远程主机导出域散列值 域控上导出域散列值 使用mimikatz 使用Invoke-DCSync.ps1脚本...
![](/images/no-images.jpg)
做的网站用户密码在哪里找/网站维护的主要内容
如果可以记得采纳哦需要查看JS,分析加密。一般密码每次都不一样,应该是加了时间戳在加密首先,查看都加载了哪些JS,是否混淆,混淆也没事,只是读起来麻烦一些,只要用心还是可以的http://www.imooc…...
![](https://img-blog.csdnimg.cn/20201106165226922.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L213XzE0MjIxMDIwMzE=,size_16,color_FFFFFF,t_70#pic_center)
wordpress 網址隠藏/站长工具seo推广秒收录
一、参数连续性 本文内容大部分来自中国科学技术大学刘利刚老师的《几何建模与处理基础》网上公开课,GAMES 102在线课程。 二、参数连续性的不足 三、几何连续性 3.1 几何连续性定义 3.2 几何连续性性质 3.3 几何连续性的具体形式 四、结语 几何连续性的引进对于曲…...
![](https://img-blog.csdnimg.cn/20191012140331993.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0FsbW9zdE9L,size_16,color_FFFFFF,t_70)
凡科怎么建设网站/舟山seo
问题背景: 在Visual Studio 2017中打开一个往期工程,已知工程是在framework 4.6.1下生成的,同时在工程中调用Matlab生成的.dll文件,但是使用的Matlab的版本未知。 1、首先直接打开工程的时候,显示framework版本不对&am…...
![](https://img-blog.csdnimg.cn/img_convert/78e90e344b3f96dcc602811c606a22a2.png)
免费微网站系统/google服务框架
什么是循环依赖?举个例子/** * A 类,引入 B 类的属性 b */public class A { private B b;}/** * B 类,引入 A 类的属性 a */public class B { private A a;}再看个简单的图:像这样,创建 a 的时候需要依赖 bÿ…...
wordpress 交互页面/线上平台推广方式
定义 2020疫情,让国内企业就全面接受了“在线办公、在家办公”的理念,并付诸实践。即使是最为传统的中小学公立学校,也由袖手旁观转为积极参与。腾讯、阿里、华为、电信、移动都相继推出了免费的远程办公和视频会议系统,这些系统都…...