做前端常用的网站及软件下载/杭州疫情最新情况
文章目录
- 学习高级数据结构
- B+树:数据库引擎的骨干
- 线段树:高效的区间查询
- Trie树:高效的字符串检索
- 探索复杂算法领域
- 图算法:解决复杂网络问题
- 字符串匹配算法:处理文本搜索
- 近似算法:在NP难题上取得近似解
- 结论

🎉欢迎来到数据结构学习专栏~深入学习与探索:高级数据结构与复杂算法
- ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹
- ✨博客主页:IT·陈寒的博客
- 🎈该系列文章专栏:数据结构学习
- 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习
- 🍹文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏
- 📜 欢迎大家关注! ❤️
在计算机科学领域,数据结构和算法是构建强大和高效程序的关键要素。随着问题的复杂性不断增加,对于更高级的数据结构和算法的需求也逐渐增加。本文将深入学习和探索一些高级数据结构和复杂算法,包括B+树、线段树、Trie树以及图算法、字符串匹配算法和近似算法等。
学习高级数据结构
B+树:数据库引擎的骨干
B+树是一种高度平衡的树状数据结构,常被用于数据库引擎中的索引结构。与普通的二叉搜索树不同,B+树的每个节点可以包含多个键值对,这使得它能够高效地支持范围查询和范围删除操作。B+树的结构使得它在磁盘存储和内存管理中都具有出色的性能。
让我们来看一个简单的B+树示例:
# B+树节点示例
class BPlusNode:def __init__(self, is_leaf=True):self.is_leaf = is_leafself.keys = []self.children = []def insert(self, key, value):# 插入键值对并保持节点平衡def search(self, key):# 在树中搜索指定键的值def delete(self, key):# 从树中删除指定键的值# 创建一个B+树
bplus_tree = BPlusTree()
bplus_tree.insert(10, "A")
bplus_tree.insert(20, "B")
bplus_tree.insert(5, "C")result = bplus_tree.search(20)
print(result) # 输出 "B"
线段树:高效的区间查询
线段树是一种用于高效处理区间查询问题的数据结构。它将一个区间分割成多个子区间,并为每个子区间维护一些有用的信息,如最小值、最大值或总和。线段树的主要应用包括范围查询、区间更新和离线统计等。
下面是一个线段树的示例,用于查询一个数列中某个范围内的最小值:
# 线段树节点示例
class SegmentTreeNode:def __init__(self, start, end):self.start = startself.end = endself.min_value = Noneself.left = Noneself.right = Nonedef build_segment_tree(arr, start, end):# 构建线段树def query_min(root, start, end):# 查询指定范围内的最小值# 创建线段树
arr = [2, 4, 1, 7, 3, 6, 5, 8]
root = build_segment_tree(arr, 0, len(arr) - 1)result = query_min(root, 2, 5)
print(result) # 输出 1
Trie树:高效的字符串检索
Trie树(前缀树)是一种专用于处理字符串检索问题的数据结构。它的主要特点是将字符串按照字符构建成树状结构,使得字符串的查找和插入操作都具有高效性。Trie树在自动补全、拼写检查和字典搜索等领域广泛应用。
下面是一个简单的Trie树示例,用于单词搜索:
# Trie树节点示例
class TrieNode:def __init__(self):self.children = {}self.is_end_of_word = Falseclass Trie:def __init__(self):self.root = TrieNode()def insert(self, word):# 插入单词到Trie树中def search(self, word):# 在Trie树中搜索单词是否存在# 创建Trie树
trie = Trie()
trie.insert("apple")
trie.insert("app")
trie.insert("banana")result1 = trie.search("apple")
result2 = trie.search("apples")
result3 = trie.search("app")print(result1) # 输出 True
print(result2) # 输出 False
print(result3) # 输出 True
探索复杂算法领域
图算法:解决复杂网络问题
图算法是处理图结构数据的算法,常用于解决各种复杂网络问题,如最短路径、最小生成树、图着色等。图算法在社交网络分析、路线规划和网络优化等领域发挥着重要作用。
其中,Dijkstra算法用于求解带权图的最短路径问题,以下是一个示例:
# Dijkstra算法示例
def dijkstra(graph, start):# 使用Dijkstra算法求解最短路径# 创建有向带权图
graph = {'A': {'B': 1, 'C': 4},'B': {'A': 1, 'C': 2, 'D': 5},'C': {'A': 4, 'B': 2, 'D': 1},'D': {'B': 5, 'C': 1}
}result = dijkstra(graph, 'A')
print(result) # 输出 {'A': 0, 'B': 1, 'C': 3, 'D': 4}
字符串匹配算法:处理文本搜索
字符串匹配算法用于在文本中查找一个子串是否出现,或者寻找与某个模式匹配的字符串。常见的字符串匹配算法包括暴力匹配、KMP算法和Boyer-Moore算法等。这些算法在文本搜索、编译器和文本编辑器中都有广泛应用。
以下是KMP算法的示例,用于在文本中查找子串:
# KMP算法示例
def kmp_search(text, pattern):# 使用KMP算法在文本中查找子串# 在文本中查找子串
text = "ABABDABACDABABCABAB"
pattern = "ABABCABAB"result = kmp_search(text, pattern)
print(result) # 输出 [10]
近似算法:在NP难题上取得近似解
近似算法是用于解决NP难问题的一种方法。这些问题在计算上非常困难,通常没有多项式时间算法来解决。近似算法通过在可接受的时间内找到一个近似解来应对这些挑战。
一个典型的例子是旅行推销员问题(TSP),它要求找到一条访问所有城市的最短路径。虽然TSP是NP难问题,但近似算法可以在合理的时间内找到接近最优解的路径。
# TSP近似算法示例
def approximate_tsp(graph):# 使用近似算法解决旅行推销员问题# 创建城市之间的距离图
city_graph = {'A': {'B': 1, 'C': 2, 'D': 3},'B': {'A': 1, 'C': 4, 'D': 5},'C': {'A': 2, 'B': 4, 'D': 6},'D': {'A': 3, 'B': 5, 'C': 6}
}result = approximate_tsp(city_graph)
print(result) # 输出 ['A', 'B', 'C', 'D', 'A']
结论
高级数据结构和复杂算法是计算机科学中的重要组成部分,它们为解决各种复杂问题提供了强大的工具。B+树、线段树和Trie树等高级数据结构可以用于高效地处理各种数据管理和字符串搜索问题。而图算法、字符串匹配算法和近似算法等复杂算法则可用于解决涉及网络、文本搜索和组合优化等各种复杂领域的挑战。
持续学习和深入研究这些高级数据结构和算法,将帮助您更好地理解计算机科学的深奥之处,并提高解决实际问题的能力。这些知识不仅对软件工程师和算法工程师有益,对于任何对计算机科学感兴趣的人来说,都是一项宝贵的财富。继续探索,您将在计算机科学的奇妙世界中获得更多的见解和乐趣。
🧸结尾
❤️ 感谢您的支持和鼓励! 😊🙏
📜您可能感兴趣的内容:
- 【Java面试技巧】Java面试八股文 - 掌握面试必备知识(目录篇)
- 【Java学习路线】2023年完整版Java学习路线图
- 【AIGC人工智能】Chat GPT是什么,初学者怎么使用Chat GPT,需要注意些什么
- 【Java实战项目】SpringBoot+SSM实战:打造高效便捷的企业级Java外卖订购系统
- 【数据结构学习】从零起步:学习数据结构的完整路径
相关文章:

深入学习与探索:高级数据结构与复杂算法
文章目录 学习高级数据结构B树:数据库引擎的骨干线段树:高效的区间查询Trie树:高效的字符串检索 探索复杂算法领域图算法:解决复杂网络问题字符串匹配算法:处理文本搜索近似算法:在NP难题上取得近似解 结论…...

CV:计算机视觉CV运用领域
计算机视觉是一项涉及大量算法和技术的跨学科领域,已经在众多领域得到广泛的应用。以下是计算机视觉的一些主要应用领域: 图像处理和图像分析:计算机视觉技术可以用于图像处理和图像分析,识别和检测特定的图像特征,例如…...

开源机密计算平台:蓬莱-OpenHarmony
演讲嘉宾 | 杜 东 回顾整理 | 廖 涛 排版校对 | 李萍萍 嘉宾简介 杜东,上海交通大学助理研究员。中国计算机学会CCF会员,ACM会员。研究兴趣为操作系统与体系结构、服务器无感知(Serverless)计算、系统安全。在包括ASPLOS、ISC…...

大一大二一心学算法的利弊
学习算法是现代计算机科学和软件工程领域中的重要组成部分。它们是解决复杂问题、优化资源利用以及提高效率的关键。学习算法的过程可以帮助培养系统性思维、分析问题能力和创造性解决方案的能力。然而,学习算法也有一些利弊,我们将在下文中详细探讨。 …...

c#using关键字的作用
https://blog.csdn.net/Mona_Zhao/article/details/91363446 using关键字的三种作用: 1. 引用命名空间; 2. 为命名空间或者类型创建别名; 3. 使用using语句。 (1)引用命名空间 类似于c和c的#include<>, pyt…...

只依赖OPENCV的工作服安全帽检测YOLOV8S
工地安全帽工作服检测Y8S,采用YOLOV8S训练模型,然后使用OPENCV的DNN调用,彻底拜托PYTORCH依赖,可以在C,PYTHON,ANDROID上跑。附件是C生成的效果测试(只需解压将图片或者视频放入VIDEOS文件夹,文件夹没图片或…...

MFC|选择获取文件路径
参考:mfc按钮选择文件或者文件夹(https://blog.csdn.net/qq_39433050/article/details/130261518) 点击按钮槽函数,选择文件 void CMFCStartGrabDlg::OnBnClickedSelectfile() {// TODO: Add your control notification handler…...

实时操作系统Freertos开坑学习笔记:(七):队列
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、队列是什么?而在freertos中,队列是什么呢?①如果要进行中断、任务的交流,那我用全局变量行吗?②…...

专业游戏翻译公司怎么选择比较合适
近年来,游戏行业持续繁荣,市场需求也在不断扩大,其中游戏翻译的需求越来越旺盛。无论是引进游戏还是让游戏走向国际市场,都需要专业的翻译公司来帮忙。那么,怎么选择合适的游戏翻译公司呢?让我们一起来看看…...

阿里云Maven和Gradle仓库最新配置
文章目录 一、简介二、仓库地址三、如何配置1、Maven配置2、Gradle配置 一、简介 阿里云云效 Maven 是什么? 阿里云Maven中央仓库为 阿里云云效 提供的公共代理仓库,帮助研发人员提高研发生产效率,使用阿里云Maven中央仓库作为下载源&am…...

尚硅谷大数据项目《在线教育之离线数仓》笔记007
视频地址:尚硅谷大数据项目《在线教育之离线数仓》_哔哩哔哩_bilibili 目录 第12章 报表数据导出 P112 01、创建数据表 02、修改datax的jar包 03、ads_traffic_stats_by_source.json文件 P113 P114 P115 P116 P117 P118 P119 P120 P121 P122【122_在…...

python考研志愿填报模拟系统vue
本系统提供给管理员对学生、院校、研究生信息、专业信息、学院信息等诸多功能进行管理。本系统对于学生输入的任何信息都进行了一定的验证,为管理员操作提高了效率,也使其数据安全性得到了保障。本考研志愿填报模拟系统以Django作为框架,B/S模…...

【LeetCode-面试经典150题-day20】
目录 70.爬楼梯 198.打家劫舍 139.单词拆分 322.零钱兑换 300.最长递增子序列 70.爬楼梯 题意: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 提示: 1 < n < …...
回归与聚类算法系列②:线性回归
目录 1、定义与公式 2、应用场景 3、特征与目标的关系分析 线性回归的损失函数 为什么需要损失函数 损失函数 ⭐如何减少损失 4、优化算法 正规方程 梯度下降 优化动态图 偏导 正规方程和梯度下降比较 5、优化方法GD、SGD、SAG 6、⭐线性回归API 7、实例&#…...

springBoot:redis使用
需求:查询酒店房间列表 1、引入依赖 <!--redis--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 2、配置yml文件 server:port: 80…...

cmake 选择 vs编译器
QQ:2967732156 QQ交流群:622684416 // 编译VS2017版本的Tars, Release版本 // win32 cmake .. -G "Visual Studio 15 2017" -D CMAKE_BUILD_TYPERelease // x64 cmake .. -G "Visual Studio 15 2017 Win64" -D CMAKE_BUILD_…...

项目(智慧教室)第一部分:cubemx配置,工程文件的移植,触摸屏的检测,项目bug说明
第一章:需求与配置 一。项目需求 二。实现外设控制 注意: 先配置引脚,再配置外设。否则会出现一些不可预料的问题 1.时钟,串口,灯,蜂鸣器配置 (1)RCC配置为外部时钟,修…...

Springboot集成redis--不同环境切换
1.单机配置 spring:redis:mode: singletonhost: 127.0.0.1port: 6379lettuce:pool:max-active: 8 #连接池最大阻塞等待时间(使用负值表示没有限制max-idle: 2 #连接池中的最大空闲连接min-idle: 1 #连接池最大阻塞等待时间(使用负值表示没有限…...

稀疏数组的实现
文章目录 目录 文章目录 前言 一 什么是稀疏数组? 二 稀疏数组怎么存储数据? 三 稀疏数组的实现 总结 前言 大家好,好久不见了,这篇博客是数据结构的第一篇文章,望大家多多支持! 一 什么是稀疏数组? 稀疏数组(Sparse Array)是一种数据结构&a…...

表达式语言的新趋势!了解SPEL如何改变开发方式
文章首发地址 SpEL(Spring Expression Language)是一种表达式语言,由Spring框架提供和支持。它可以在运行时对对象进行解析和计算,用于动态地构建和操作对象的属性、方法和表达式。以下是SpEL的一些特性和功能: 表达式…...

一套成熟的实验室信息管理系统(云LIS源码)ASP.NET CORE
一套成熟的实验室信息管理系统,集前处理、检验、报告、质控、统计分析、两癌等模块为一体的网络管理系统。它的开发和应用将加快检验科管理的统一化、网络化、标准化的进程。 LIS把检验、检疫、放免、细菌微生物及科研使用的各类分析仪器,通过计算机联…...

NPM使用技巧
NPM使用技巧 前言技巧全局模块位置PowerShell报错安装模块冲突 NPM介绍NPM命令使用方法基本命令模块命令查看模块运行命令镜像管理 常用模块rimrafyarn 前言 本文包含NodeJS中NPM包管理器的使用技巧,具体内容包含NPM介绍、NPM命令、常用模块等内容,还包…...

java学习一
目录 Java 与 C 的区别 Java程序是编译执行还是解释执行 编译型语言 解释型语言 Java 与 C 的区别 Java 是纯粹的面向对象语言,所有的对象都继承自 java.lang.Object,C 兼容 C ,不但支持面向对象也支持面向过程。Java 通过虚拟机从而实现…...

PV PVC in K8s
摘要 在Kubernetes中,PV(Persistent Volume)和PVC(Persistent Volume Claim)是用于管理持久化存储的重要资源对象。PV表示存储的实际资源,而PVC表示对PV的声明性要求。当应用程序需要使用持久化存储时&…...

SAP-PP:基础概念笔记-5(物料主数据的MRP1~4视图)
文章目录 前言一、MRP1视图Base Unit of Measure(UoM)MRP 组采购组ABC 指示器Plant-Specific Material Status 特定的工厂物料状态MRP 类型 MRP TypeMRP 类型 MRP TypeMaster Production Scheduling(MPS) 主生产计划基于消耗的计划(CBP)再订货点Reorder-…...

【C语言】初阶测试 (带讲解)
目录 ① 选择题 1. 下列程序执行后,输出的结果为( ) 2. 以下程序的输出结果是? 3. 下面的代码段中,执行之后 i 和 j 的值是什么() 4. 以下程序的k最终值是: 5. 以下程序的最终的输出结果为ÿ…...

用huggingface.Accelerate进行分布式训练
诸神缄默不语-个人CSDN博文目录 本文属于huggingface.transformers全部文档学习笔记博文的一部分。 全文链接:huggingface transformers包 文档学习笔记(持续更新ing…) 本部分网址:https://huggingface.co/docs/transformers/m…...

unity 物体至视图中心以及新对象创建位置
如果游戏对象不在视野中心或在视野之外, 一种方法是双击Hierarchy中的对象名称 另一种是选中后按F 新建物体时对象的位置不是在坐标原点,而是在当前屏幕的中心...

船舶稳定性和静水力计算——绘图体平面图,静水力,GZ计算(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Python 网页爬虫的原理是怎样的?
网页爬虫是一种自动化工具,用于从互联网上获取和提取信息。它们被广泛用于搜索引擎、数据挖掘、市场研究等领域。 网页爬虫的工作原理可以分为以下几个步骤:URL调度、页面下载、页面解析和数据提取。 URL调度: 网页爬虫首先需要一个初始的U…...