当前位置: 首页 > news >正文

贵阳网站建设运营/个人网站制作软件

贵阳网站建设运营,个人网站制作软件,建设网站的叫什么职位,简述网站一般建设的流程3.2 从数据操作的粒度划分:表级锁、页级锁、行锁 为了提高数据库并发度,每次锁定的数据范围越小越好,理论上每次只锁定当前操作的数据的方案会得到最大的并发度,但管理锁是很耗资源(涉及获取、检查、释放锁等动作)。因…

3.2 从数据操作的粒度划分:表级锁、页级锁、行锁

为了提高数据库并发度,每次锁定的数据范围越小越好,理论上每次只锁定当前操作的数据的方案会得到最大的并发度,但管理锁是很耗资源(涉及获取、检查、释放锁等动作)。因此数据库系统需要在高并发响应系统性能两方面进行平衡,这样就产生了“锁粒度(Lock granularity)”的概念。
对一条记录加锁影响的也只是这条记录而已,我们就说这个锁的粒度比较细;其实一个事务也可以在表级别进行加锁,自然就被称之为表级锁或者表锁,对一个表加锁影响整个表中的记录,我们就说这个锁的粒度比较粗。锁的粒度主要分为表级锁、页级锁和行锁。

1. 表锁(Table Lock

该锁会锁定整张表,它是MysQL中最基本的锁策略,并不依赖于存储引擎(不管你是MysQL的什么存储引擎对于表锁的策略都是一样的),并且表锁是开销最小的策略(因为粒度比较大)。由于表级锁一次会将整个表锁定,所以可以很好的避免死锁问题。当然,锁的粒度大所带来最大的负面影响就是出现锁资源争用的概率也会最高,导致并发率大打折扣

  ① 表级别的S锁、X锁 

在对某个表执行 SELECT INSERT DELETE UPDATE 语句时, InnoDB 存储引擎是不会为这个表添加表级别的 S 或者 X 的。在对某个表执行一些诸如 alter table drop table  这类的 DDL 语句时,其他事务对这个表并发执行诸如select insert delete update的语句会发生阻塞。同理,某个事务中对某个表执行select insert delete update 语句时,在其他会话中对这个表执行 DDL 语句也会发生阻塞。这个过程其实是通过在 server 使用一种称之为 元数据锁 (英文名: Metadata Locks ,简称 MDL )结构来实现的(总之就是宁可用元数据锁也不用表级别的S 锁、X锁)。
innodb只会在一些特殊情况下,比方说 崩溃恢复 过程中用到。在系统变量 autocommit=0 innodb_table_locks = 1 时, 手动 获取InnoDB存储引擎提供的表 t S 或者 X 可以这么写:
lock tables t read  InnoDB 会对表 t 加表级别的 S 锁 
lock tables t write  InnoDB 会对表 t 加表级别的 X 锁 
不过尽量避免在使用 InnoDB 存储引擎的表上使用 LOCK TABLES 这样的手动锁表语句,它们并不会提供什么额外的保护,只是会降低并发能力而已。InnoDB 的厉害之处还是实现了更细粒度的 行锁 ,关于 InnoDB表级别的 S X 大家了解一下就可以了。
总结 : 
MyISAM 在执行查询语句(select)前, 会给涉及的所有表加读锁, 在执行增删改操作前, 会给涉及的表加写锁, InnoDB 存储引擎是不会为这个表添加表级锁的 读锁 写锁 的(因为InnoDB实现了行锁)

  ② 意向锁 (intention lock

InnoDB 支持 多粒度锁( multiple granularity locking ,它允许 行级锁 表级锁 共存,而 意向
就是其中的一种 表锁
1. 意向锁的存在是为了协调行锁和表锁的关系, 支持多粒度(表锁与行锁)的锁并存
2. 意向锁是一种不与行级锁冲突的表级锁, 这点非常重要
3. 表明某个事务正在某些行持有了锁或该事务准备去持有锁 
意向锁分为两种:
     ① 意向共享锁 intention shared lock, IS ):事务有意向对表中的某些行加 共享锁 S 锁)
-- 事务要获取某些行的 S 锁,必须先获得表的 IS 锁。
SELECT column FROM table ... LOCK IN SHARE MODE;

     ②意向排他锁intention exclusive lock, IX):事务有意向对表中的某些行加排他锁X锁)

-- 事务要获取某些行的 X 锁,必须先获得表的 IX 锁。
SELECT column FROM table ... FOR UPDATE;

即:意向锁是由存储引擎 自己维护的 ,用户无法手动操作意向锁,在为数据行加共享 / 排他锁之前, InooDB 会先获取该数据行 所在数据表的对应意向锁

1. 意向锁要解决的问题
现在有两个事务,分别是T1和T2,其中T2试图在该表级别上应用共享或排它锁,如果没有意向锁存在,那么T2就需要去检查各个页或行是否存在锁;如果存在意向锁,那么此时就会受到由T1控制的 表级别意向锁的阻塞 。T2在锁定该表前不必检查各个页或行锁,而只需检查表上的意向锁。简单来说就是给更大一级别的空间示意里面是否已经上过锁。

在数据表的场景中, 如果我们给某一行数据加上了排它锁,数据库会自动给更大一级的空间,比如数据页或数据表加上意向锁,告诉其他人这个数据页或数据表已经有人上过排它锁了 ,这样当其他人想要获取数据表排它锁的时候,只需要了解是否有人已经获取了这个数据表的意向排他锁即可。
 
如果事务想要获得数据表中某些记录的共享锁,就需要在数据表上添加 意向共享锁
如果事务想要获得数据表中某些记录的排他锁,就需要在数据表上添加 意向排他锁
这时,意向锁会告诉其他事务已经有人锁定了表中的某些记录。
举例:
 
因为共享锁与排他锁互斥,所以事务B在试图对teacher表加共享锁的时候,必须保证两个条件。
(1)当前没有其他事务持有teacher表的排他锁
(2)当前没有其他事务持有teacher表中任意一行的排他锁。

为了检测是否满足第二个条件,事务B必须在确保teacher表不存在任何排他锁的前提下,去检测表中的每一行是否存在排他锁。 很明显这是一个效率很差的做法,但是有了意向锁之后,情况就不一样了。
意向锁是怎么解决这个问题的呢?首先,我们需要知道意向锁之间的兼容互斥性,如下所示。

意向锁之间是互相兼容的(虽然是表级的,但描述的是行级上锁情况),虽然意向锁和自家兄弟互相兼容,但是它会与普通的排他/共享锁互斥。
注意这里的排他/共享锁指的都是表锁, 意向锁不会与行级的共享/排他锁互斥。回到刚才teacher 表的例子。
 
意向锁的并发性

意向锁不会与行级的共享 / 排他锁互斥!正因为如此,意向锁并不会影响到多个事务对不同数据行加排 他锁时的并发性。(不然我们直接用普通的表锁就行了)

我们扩展一下上面 teacher 表的例子来概括一下意向锁的作用(一条数据从被锁定到被释放的过程中,可 能存在多种不同锁,但是这里我们只着重表现意向锁)。
从上面的案例可以得到如下结论:
1. InnoDB 支持 多粒度锁 ,特定场景下,行级锁可以与表级锁共存
2. 意向锁之间互不排斥,但除了 IS S 兼容外, 意向锁会与 共享锁 / 排他锁 互斥
3. IX IS 是表级锁,不会和行级的 X S 锁发生冲突。只会和表级的 X S 发生冲突。
4. 意向锁在保证并发性的前提下,实现了 行锁和表锁共存 满足事务隔离性 的要求。

③ 元数据锁(MDL锁) 

MySQL5.5 引入了 meta data lock ,简称 MDL 锁,属于表锁范畴。 MDL 的作用是,保证读写的正确性。比 如,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个 表结构做变更 ,增加了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。
因此, 当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 锁。
读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性,解决了DML和DDL操作之间的一致性问题。 不需要显式使用 ,在访问一个表的时候会被自动加上。

2. InnoDB中的行锁 

行锁(Row Lock)也称为记录锁,顾名思义,就是锁住某一行(某条记录row)。需要的注意的是,MySQL服务器层并没有实现行锁机制,行级锁只在存储引擎层实现。
优点:锁定力度小,发生锁冲突概率低,可以实现的并发度高。

缺点:对于锁的开销比较大,加锁会比较慢,容易出现死锁情况。


InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。

先建立student表

① 记录锁(Record Locks

记录锁也就是仅仅把一条记录锁上,官方的类型名称为: LOCK_REC_NOT_GAP 。比如我们把 id 值为 8 的那条记录加一个记录锁的示意图如图所示。仅仅是锁住了id 值为8的记录,对周围的数据没有影响。
举例如下:
记录锁是有 S 锁和 X 锁之分的,称之为 S 型记录锁 X 型记录锁
  • 当一个事务获取了一条记录的S型记录锁后,其他事务也可以继续获取该记录的S型记录锁,但不可 以继续获取X型记录锁;
  • 当一个事务获取了一条记录的X型记录锁后,其他事务既不可以继续获取该记录的S型记录锁,也不可以继续获取X型记录锁。

② 间隙锁(Gap Locks

MySQL REPEATABLE READ 隔离级别下是可以解决幻读问题的,解决方案有两种,可以使用 MVCC 方案解决,也可以采用 加锁 方案解决。但是在使用加锁方案解决时有个大问题,就是事务在第一次执行读取操作时,那些幻影记录尚不存在,我们无法给这些 幻影记录 加上 记录锁 InnoDB 提出了一种称之为 Gap Locks 的锁,官方的类型名称为: LOCK_GAP ,我们可以简称为 gap 。比如,把 id 值为 8 的那条记录加一个gap 锁的示意图如下。

 

图中 id 值为 8 的记录加了 gap 锁,意味着 不允许别的事务在 id 值为 8 的记录前边的间隙插入新记录 ,其实就是id列的值 (3, 8) 这个区间的新记录是不允许立即插入的。比如,有另外一个事务再想插入一条 id 值为 4 的新记录,它定位到该条新记录的下一条记录的id 值为 8 ,而这条记录上又有一个 gap 锁,所以就会阻塞插入操作,直到拥有这个gap 锁的事务提交了之后, id 列的值在区间 (3, 8) 中的新记录才可以被插入。
gap 锁的提出仅仅是为了防止插入幻影记录而提出的
间隙锁的引入,可能会导致同样的语句锁住更大的范围, 这其实是影响了并发度的, 下面的例子会产生死锁
  1. session 1 执行select ... for update 语句, 由于id = 5 这一行并不存在, 因此会加上间隙锁(3,8) 
  2. session 2 执行select ... for update 语句, 同样加上间隙锁(3,8), 间隙锁之间不会冲突, 因此这个语句可以执行成功
  3. session 2 试图插入一行, 被session 1 的间隙锁挡住,进入等待
  4. session 1 视图插入一行, 被session 2 的间隙锁挡住, 两个session进入死锁

③ 临键锁(Next-Key Locks

记录锁 + 间隙锁

④ 插入意向锁(Insert Intention Locks

我们说一个事务在 插入 一条记录时需要判断一下插入位置是不是被别的事务加了 gap next - key 也包含 gap ),如果有的话,插入操作需要等待,直到拥有 gap 的那个事务提交。但是 InnoDB 定事务在等待的时候也需要在内存中生成一个锁结构 ,表明有事务想在某个 间隙 插入 新记录,但是 现在在等待。InnoDB 就把这种类型的锁命名为 Insert Intention Locks ,官方的类型名称为: LOCK_INSERT_INTENTION ,我们称为 插入意向锁 。插入意向锁是一种 Gap ,不是意向锁,在 insert操作时产生。

插入意向锁是在插入一条记录行前,由INSERT操作产生的一种间隙锁。该锁用以表示插入意向,
当多个事务在同一区间(gap)插入位置不同的多条数据时,事务之间不需要互相等待。假设存在两条值分别为4和7的记录,两个不同的事务分别试图插入值为5和6的两条记录,每个事务在获取插入行上独占的(排他)锁前,都会获取(4,7)之间的间隙锁,但是因为数据行之间并
不冲突,所以两个事务之间并不会产生冲突(阻塞等待)。
总结来说,插入意向锁的特性可以分成两部分:

  1. 插入意向锁是一种特殊的间隙锁—―间隙锁可以锁定开区间内的部分记录。
  2. 插入意向锁之间互不排斥,所以即使多个事务在同一区间插入多条记录,只要记录本身(主键、唯一索引)不冲突,那么事务之间就不会出现冲突等待。

注意,虽然插入意向锁中含有意向锁三个字,但是它并不属于意向锁而属于间隙锁,因为意向锁是表锁而插入意向锁是行锁
比如,把id值为8的那条记录加一个插入意向锁的示意图如下:
比如, 现在T1为id值为8 的记录加了一个gap锁, 然后T2 和 T3 分别想向student表中插入id值分别为4,5的两条记录, 所以现在为id值为8的记录加的锁的示意图就如下所示:

从图中可以看到,由于T1持有gap锁,所以T2和T3需要生成一个插入意向锁的锁结构并且处于等待状态。当T1提交后会把它获取到的锁都释放掉,这样T2和T3就能获取到对应的插入意向锁了(本质上就是把插入意向锁对应锁结构的is_waiting属性改为false),T2和T3之间也并不会相互阻塞,它们可以同时获取到id值为8的插入意向锁,然后执行插入操作。事实上插入意向锁并不会阻止别的事务继续获取该记录上任何类型的锁。

3.3 从对待锁的态度划分:乐观锁、悲观锁

从对待锁的态度来看锁的话,可以将锁分成乐观锁和悲观锁,从名字中也可以看出这两种锁是两种看待
数据并发的思维方式 。需要注意的是,乐观锁和悲观锁并不是锁,而是锁的 设计思想

1. 悲观锁(Pessimistic Locking

悲观锁是一种思想,顾名思义,就是很悲观,对数据被其他事务的修改持保守态度,会通过数据库自身的锁机制来实现,从而保证数据操作的排它性。
悲观锁总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会 阻塞 直到它拿到锁( 共享资源每次只给一个线程使用,其它线程阻塞, 用完后再把资源转让给其它线程 )。比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁,当其他线程想要访问数据时,都需要阻塞挂起。Java synchronized ReentrantLock 等独占锁就是悲观锁思想的实现。

2. 乐观锁(Optimistic Locking

乐观锁认为对同一数据的并发操作不会总发生,属于小概率事件,不用每次都对数据上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,也就是 不采用数据库自身的锁机制,而是通过 程序来实现 。在程序上,我们可以采用 版本号机制 或者 CAS 机制 实现。 乐观锁适用于多读的应用类型, 这样可以提高吞吐量 。在 Java java.util.concurrent.atomic 包下的原子变量类就是使用了乐观锁 的一种实现方式: CAS 实现的。

1. 乐观锁的版本号机制

在表中设计一个 版本字段 version ,第一次读的时候,会获取 version 字段的取值。然后对数据进行更新或删除操作时,会执行 UPDATE ... SET version=version+1 WHERE version=version 。此时如果已经有事务对这条数据进行了更改,修改就不会成功。

2. 乐观锁的时间戳机制

时间戳和版本号机制一样,也是在更新提交的时候,将当前数据的时间戳和更新之前取得的时间戳进行比较,如果两者一致则更新成功,否则就是版本冲突。
你能看到乐观锁就是程序员自己控制数据并发操作的权限,基本是通过给数据行增加一个戳(版本号或者时间戳),从而证明当前拿到的数据是否最新。

3. 两种锁的适用场景

从这两种锁的设计思想中,我们总结一下乐观锁和悲观锁的适用场景:
  1. 乐观锁 适合 读操作多 的场景,相对来说写的操作比较少。它的优点在于 程序实现 不存在死锁 问题,不过适用场景也会相对乐观,因为它阻止不了除了程序以外的数据库操作。
  2. 悲观锁 适合 写操作多 的场景,因为写的操作具有 排它性 。采用悲观锁的方式,可以在数据库层面阻止其他事务对该数据的操作权限,防止 - - 的冲突。

3.4 其它锁之:全局锁

全局锁就是对 整个数据库实例 加锁。当你需要让整个库处于 只读状态 的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。全局锁的典型使用 场景 是:做 全库逻辑备份
全局锁的命令:

Flush tables with read lock

3.5 其它锁之:死锁

1. 概念

死锁是指两个或多个事务都持有对方需要的锁, 并且在等待对方释放, 并且双方都不会释放自己的锁。
死锁示例:

  

这时候,事务1在等待事务2释放id=2的行锁,而事务2在等待事务1释放id=1的行锁。 事务1和事务2在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有 两种策略

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务(将持有最少行级排他锁的事务进行回滚),让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on ,表示开启这个逻辑。

2. 产生死锁的必要条件

  1. 两个或者两个以上事务
  2. 每个事务都已经持有锁并且申请新的锁
  3. 锁资源同时只能被同一个事务持有或者不兼容
  4. 事务之间因为持有锁和申请锁导致彼此循环等待

死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。

 3.如何处理死锁

  • 方式1:等待,直到超时(innodb_lock_wait_timeout=50s)。

即当两个事务互相等待时,当一个事务等待时间超过设置的阈值时,就将其回滚,另外事务继续进行。这种方法简单有效,在innodb中,参数innodb_lock_wait_timeout用来设置超时时间。
缺点:对于在线服务来说,这个等待时间往往是无法接受的。
那将此值修改短一些,比如1s,0.1s是否合适?不合适,容易误伤到普通的锁等待。

  • 方式2:使用死锁检测进行死锁处理

方式1检测死锁太过被动,innodb还提供了wait-for graph算法来主动进行死锁检测,每当加锁请求无法立即满足需要并进入等待时,wait-for graph算法都会被触发。

      

基于这两个信息, 可以绘制wait-for graph(等待图)

                                 

死锁检测的原理是构建一个以事务为顶点, 锁为边的有向图,判断有向图是否存在环, 存在即有锁

一旦检测到回路、有死锁,这时候InnoDB存储引擎会选择回滚undo量最小的事务(将持有最少行级排他锁的事务进行回滚),让其他事务继续执行(innodb_deadlock_detect=on `表示开启这个逻辑)。
缺点:每个新的被阻塞的线程,都要判断是不是由于自己的加入导致了死锁,这个操作时间复杂度是o(n)。如果100个并发线程同时更新同一行,意味着要检测100*100 = 1万次,1万个线程就会有1千万次检测。


如何解决?

  • 方式1:关闭死锁检测,但意味着可能会出现大量的超时,会导致业务有损。
  • 方式2:控制并发访问的数量。比如在中间件中实现对于相同行的更新,在进入引擎之前排队,这样在InnoD内部就不会有大量的死锁检测工作。
     

进一步的思路:

可以考虑通过将一行改成逻辑上的多行来减少锁冲突. 比如, 连锁超市账户总额的记录, 可以考虑放到多条记录上, 账户总额等于这多个记录的值的总和.

4.如何避免死锁

  • 合理设计索引,使业务sQL尽可能通过索引定位更少的行,减少锁竞争。

  • 调整业务逻辑sQL执行顺序,避免update/delete长时间持有锁的sQL在事务前面。

  • 避免大事务,尽量将大事务拆成多个小事务来处理,小事务缩短锁定资源的时间,发生锁冲突的几率也更小。

  • 在并发比较高的系统中,不要显式加锁,特别是是在事务里显式加锁。如select ... for update语句,如果是在事务里运行了start transaction或设置了autocommit等于o,那么就会锁定所查找到的记录。

  • 降低隔离级别。如果业务允许,将隔离级别调低也是较好的选择,比如将隔离级别从RR调整为Rc,可以避免掉很多因为gap锁造成的死锁。
     

相关文章:

第15章_锁: (表级锁、页级锁、行锁、悲观锁、乐观锁、全局锁、死锁)

3.2 从数据操作的粒度划分:表级锁、页级锁、行锁 为了提高数据库并发度,每次锁定的数据范围越小越好,理论上每次只锁定当前操作的数据的方案会得到最大的并发度,但管理锁是很耗资源(涉及获取、检查、释放锁等动作)。因…...

python音频转文字调用baidu

python音频转文字调用的是百度智能云的接口,因业务需求会涉及比较多数字,所以这里做了数字的处理,可根据自己的需求修改。 from flask import Flask, request, jsonify import requestsfrom flask_limiter import Limiterapp Flask(__name_…...

靶场溯源第二题

关卡描述:1. 网站后台登陆地址是多少?(相对路径) 首先这种确定的网站访问的都是http或者https协议,搜索http看看。关于http的就这两个信息,然后172.16.60.199出现最多,先过滤这个ip看看 这个很…...

mysql 的增删改查以及模糊查询、字符集语句的使用

一、mysql启动与登陆(windows下的mysql操作) 1.启动mysql服务 net start mysql81 2.登陆mysql mysql -uroot -p 3.查看所有数据库 show databases; 二、模糊查询(like) 1. _代表查询单个 2.%代表查询多个 3.查找所有含有schema的数据库;…...

Python Django框架中文教程:学习简单、灵活、高效的Web应用程序框架

概述: Python Django是一种流行的Web应用程序框架,被广泛应用于开发高效、可扩展的网站和Web应用程序。Django以其简单、灵活和高效而受到开发者们的青睐。它提供了强大的工具和功能,使开发过程更加容易和高效。 Django的主要目标是帮助开发者快速构建…...

Docker认识即安装

Docker及相关概念 Docker和虚拟机方式的区别:虚拟机技术是虚拟出一套硬件后,在其上运行一个完整的操作系统,在该系统上在运行所需应用进程;而容器内的应用进程是直接运行于宿主的内核,容器内没有自己的内核&#xff0…...

chrome 谷歌浏览器 导出插件拓展和导入插件拓展

给同事部署 微软 RPA时,需要用到对应的chrome浏览器插件;谷歌浏览器没有外网是不能直接下载拓展弄了半小时后才弄好,竟发现没有现成的教程,遂补充; 如何打包导出 谷歌浏览器 地址栏敲 chrome://extensions/在对应的地…...

fastjson漏洞批量检测工具

JsonExp 简介 版本:1.3.5 1. 根据现有payload,检测目标是否存在fastjson或jackson漏洞(工具仅用于检测漏洞)2. 若存在漏洞,可根据对应payload进行后渗透利用3. 若出现新的漏洞时,可将最新的payload新增至…...

Vue进阶(六十七)页面刷新路由传参丢失问题分析及解决

文章目录 一、前言二、问题排查三、延伸阅读3.1 Apache服务器access_log日志3.2 浏览器的常见User Agent 各字段的解释 一、前言 问题描述:Vue项目上线后,在IE浏览器上,从A页面跳转至B页面,B页面通过data中接收来自A页面的参数信…...

阿里云ubuntu服务器搭建ftp服务器

阿里云ubuntu服务器搭建ftp服务器 服务器环境安装步骤一.创建用户二.安装 vsftp三 配置vsftp四.配置阿里云安全组 服务器环境 阿里云上的云服务器,操作系统为 ubuntu20.04。 安装步骤 一.创建用户 为什么需要创建用户? 这里的用户,指的是…...

03 卷积操作图片

一、均值滤波 # 卷积操作 # 输入图片. input, 必须是4维tensor(图片数量, 图片高度, 图片的宽度, 图片的通道数) # filters, 卷积核, 必须是4维的tensor(卷积核的高度和宽度, 输入图片的通道数, 卷积核的个数) # strides, 步长, 卷积核在图片的各个维度上的移动步长, (1, 1, 1,…...

软考:中级软件设计师:程序语言基础:表达式,标准分类,法律法规,程序语言特点,函数传值传址

软考:中级软件设计师:程序语言基础:表达式 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都…...

Java“牵手”1688商品详情数据,1688商品详情API接口,1688API接口申请指南

1688平台商品详情接口是开放平台提供的一种API接口,通过调用API接口,开发者可以获取1688商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品详情接口API是一种用于获取电商平台上商品详情数据的接口,通过…...

stable diffusion实践操作-批次出图

系列文章目录 stable diffusion实践操作 文章目录 系列文章目录前言一、批次出图介绍1.1 webUI设置1.2 参数介绍 二、批次出图使用2.1 如何设置2.1 效果展示 总结 前言 本章主要介绍SD批次出图。 想要一次产生多张图片的时候使用。 一、批次出图介绍 1.1 webUI设置 1.2 参数…...

LeetCode热题100 【cpp】题解(一)哈希表和双指针

文章目录 1. 两数之和49. 字母异位词分组128. 最长连续序列283. 移动零11. 盛最多水的容器15. 三数之和42. 接雨水 题单链接: LeetCode 热题 100 1. 两数之和 leetcode题目链接 题解1:暴力枚举 时间复杂度: O ( n 2 ) O(n^2) O(n2) class …...

Python爬虫常见代理池实现和优化

在这篇文章中,我们将探讨Python爬虫中常见的代理池实现和优化方法。在爬取网站数据时,为防止被目标网站封禁IP,我们通常会使用代理IP进行访问。一个高效且稳定的代理池可以帮助我们轻松应对各种反爬策略。   首先,我们来了解一下…...

前端面试的话术集锦第 3 篇:进阶篇上

这是记录前端面试的话术集锦第三篇博文——进阶篇上,我会不断更新前端面试话术的博文。❗❗❗ 1 谈谈变量提升 当执⾏JS代码时,会⽣成执⾏环境,只要代码不是写在函数中的,就是在全局执⾏环境中,函数中的代码会产⽣函数执⾏环境,只此两种执⾏环境。 b() // call b conso…...

【文字到语音的论文总结】

1.文字到语音的整个过程 文字到语音的一般整体结构 主要是下面这个流程,每个网络可能会把其中两者或是三者融合在一起来; 长度不同的问题 生成的语音可能和文字的长度并不一样,因此需要解决这个问题 Tactron使用的是交叉注意力的方式解…...

E. Data Structures Fan(思维 + 异或前缀和)

Problem - E - Codeforces 给你一个整数数组 a1, a2,..., an,以及一个由 n 个字符组成的二进制字符串† s。 Augustin 是一个数据结构的爱好者。因此,他请你实现一个可以回答 q 个查询的数据结构。这里有两种类型的查询: Plain Text "1…...

初学python爬虫学习笔记——爬取网页中小说标题

初学python爬虫学习笔记——爬取网页中小说标题 一、要爬取的网站小说如下图 二、打开网页的“检查”,查看html页面 发现每个标题是列表下的一个个超链接,从183.html到869.html 可以使用for循环依次得到: x range(183,600) for i in x:pr…...

The WebSocket session [x] has been closed and no method (apart from close())

在向客户端发送消息时,session关闭了。 不管是单客户端发送消息还是多客户端发送消息,在发送消息之前判断session 是否关闭 使用 isOpen() 方法...

前端实现展开收起的效果 (react)

需求背景:需要实现文本的展开收起效果,文本是一行一行的,数据格式是数组结构。 如图所示(图片已脱敏) 简单实现:使用一个变量控制展开收起效果。 展开收起逻辑部分(react) const […...

ABY2.0:更低的通信开销

参考文献: [ABY] Demmler D, Schneider T, Zohner M. ABY-A framework for efficient mixed-protocol secure two-party computation[C]//NDSS. 2015.[ABY3] Mohassel P, Rindal P. ABY3: A mixed protocol framework for machine learning[C]//Proceedings of the…...

vue项目预览图片

1.图片为本地上传的预览&#xff1a; <input type"file" ref"file"/> <img :src"imgUrl"/>let fr new FileReader()fr.readAsArrayBuffer(this.$refs.file.files[0])fr.addEventListener("loadend", (e) > {let buff…...

Tomcat 安装

1.关闭防火墙 2.安装JDK包 3. 4。添加环境变量 5.刷新配置文件 6.解压文件 7.启动tomcat 8. 9.编写tomcat.service文件 vim /etc/systemd/system/tomcat.service 10.刷新服务 11.打开浏览器访问&#xff1a;192.168.2.100:8080/&#xff0c;正常可以看到以下界面...

计算机网络的故事——HTTP报文内的HTTP信息

HTTP报文内的HTTP信息 文章目录 HTTP报文内的HTTP信息一、HTTP 报文二、请求报文及响应报文的结构三、编码提升传输速率 一、HTTP 报文 HTTP报文是由多行&#xff08;CRLF作换行符&#xff09;数据构成的字符串文本&#xff0c;HTTP报文可以分为报文首部和报文主体两部分&…...

CF1120 D. Power Tree 巧妙的图论转化

传送门 [前题提要]:无 题目描述: 就是给你一棵树,然后每个点有花费,然后你可以选一个点,付费后对这个点的子树的所有叶子结点增减任意权值. 考虑有一个人会给这棵树的所有叶子结点赋值(值我们不知道),输出最小的花费,使得无论它如何赋值,我们使用上述的花 费都能使所有的叶子…...

【算法训练-字符串 三】最长公共子串、最长公共子序列

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是【】&#xff0c;使用【】这个基本的数据结构来实现&#xff0c;这个高频题的站点是&#xff1a;CodeTop&#xff0c;筛选条件为&#xff1a;目标公…...

lintcode 1446 · 01矩阵走路问题 【两次BFS, VIP 中等 1也计算距离,但是不入队列】

题目链接&#xff0c;描述 https://www.lintcode.com/problem/1446 给定一个大小为 n*m 的 01 矩阵 grid &#xff0c;1 是墙&#xff0c;0 是路&#xff0c;你现在可以把 grid 中的一个 1 变成 0&#xff0c;请问从左上角走到右下角是否有路可走&#xff1f;如果有路可走&am…...

第一个实例:QT实现汽车电子仪表盘

目录 1.实现效果 1.1.视频演示 1.2.实现效果截图 2.生成的安装程序 3.功能概述 4.具体实现 5.QT扩展介绍 5.1.QT介绍 5.2.QT历史发展 5.3.QT平台支持 5.4.Qt Creator 5.5.优势 5.5.1.优良的跨平台特性 5.5.2.面向对象 5.5.3.丰富的 API 1.实现效果 1.1.视频演…...