律师事务所 网站模板/超级外链发布
文章目录
- 一、使用 Java API 和 JavaRDD<Row> 在 Spark SQL 中向数据帧添加新列
- 二、foreachPartition 遍历 Dataset
- 三、Dataset 自定义 Partitioner
- 四、Dataset 重分区并且获取分区数
一、使用 Java API 和 JavaRDD 在 Spark SQL 中向数据帧添加新列
在应用 mapPartition
函数后创建一个新的数据框:
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;public class Handler implements Serializable {public void handler(Dataset<Row> sourceData) {Dataset<Row> rowDataset = sourceData.where("rowKey = 'abcdefg_123'").selectExpr("split(rowKey, '_')[0] as id","name","time").where("name = '小强'").orderBy(functions.col("id").asc(), functions.col("time").desc());FlatMapFunction<Iterator<Row>,Row> mapPartitonstoTime = rows->{Int count = 0; // 只能在每个分区内自增,不能保证全局自增String startTime = "";String endTime = "";List<Row> mappedRows=new ArrayList<Row>();while(rows.hasNext()){count++;Row next = rows.next();String id = next.getAs("id");if (count == 2) {startTime = next.getAs("time");endTime = next.getAs("time");}Row mappedRow= RowFactory.create(next.getString(0), next.getString(1), next.getString(2), endTime, startTime);mappedRows.add(mappedRow);}return mappedRows.iterator();};JavaRDD<Row> sensorDataDoubleRDD=rowDataset.toJavaRDD().mapPartitions(mapPartitonstoTime);StructType oldSchema=rowDataset.schema();StructType newSchema =oldSchema.add("startTime",DataTypes.StringType,false).add("endTime",DataTypes.StringType,false);System.out.println("The new schema is: ");newSchema.printTreeString();System.out.println("The old schema is: ");oldSchema.printTreeString();Dataset<Row> sensorDataDoubleDF=spark.createDataFrame(sensorDataDoubleRDD, newSchema);sensorDataDoubleDF.show(100, false);}
}
打印结果:
The new schema is:
root|-- id: string (nullable = true)|-- name: string (nullable = true)|-- time: string (nullable = true)The old schema is:
root|-- id: string (nullable = true)|-- name: string (nullable = true)|-- time: string (nullable = true)|-- startTime: string (nullable = true)|-- endTime: string (nullable = true)+-----------+---------+----------+----------+----------+
|id |name |time |startTime |endTime |
+-----------+---------+----------+----------+----------+
|abcdefg_123|xiaoqiang|1693462023|1693462023|1693462023|
|abcdefg_321|xiaoliu |1693462028|1693462028|1693462028|
+-----------+---------+----------+----------+----------+
参考:
java - 使用 Java API 和 JavaRDD 在 Spark SQL 中向数据帧添加新列
java.util.Arrays$ArrayList cannot be cast to java.util.Iterator
二、foreachPartition 遍历 Dataset
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;import java.io.IOException;
import java.io.Serializable;
import java.util.Iterator;public class Handler implements Serializable {public void handler(Dataset<Row> sourceData) {JavaRDD<Row> dataRDD = rowDataset.toJavaRDD();dataRDD.foreachPartition(new VoidFunction<Iterator<Row>>() {@Overridepublic void call(Iterator<Row> rowIterator) throws Exception {while (rowIterator.hasNext()) {Row next = rowIterator.next();String id = next.getAs("id");if (id.equals("123")) {String startTime = next.getAs("time");// 其他业务逻辑}}}});// 转换为 lambda 表达式dataRDD.foreachPartition((VoidFunction<Iterator<Row>>) rowIterator -> {while (rowIterator.hasNext()) {Row next = rowIterator.next();String id = next.getAs("id");if (id.equals("123")) {String startTime = next.getAs("time");// 其他业务逻辑}}});}
}
三、Dataset 自定义 Partitioner
参考:spark 自定义 partitioner 分区 java 版
import org.apache.commons.collections.CollectionUtils;
import org.apache.spark.Partitioner;
import org.junit.Assert;import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;/*** Created by lesly.lai on 2018/7/25.*/
public class CuxGroupPartitioner extends Partitioner {private int partitions;/*** map<key, partitionIndex>* 主要为了区分不同分区*/private Map<Object, Integer> hashCodePartitionIndexMap = new ConcurrentHashMap<>();public CuxGroupPartitioner(List<Object> groupList) {int size = groupList.size();this.partitions = size;initMap(partitions, groupList);}private void initMap(int size, List<Object> groupList) {Assert.assertTrue(CollectionUtils.isNotEmpty(groupList));for (int i=0; i<size; i++) {hashCodePartitionIndexMap.put(groupList.get(i), i);}}@Overridepublic int numPartitions() {return partitions;}@Overridepublic int getPartition(Object key) {return hashCodePartitionIndexMap.get(key);}public boolean equals(Object obj) {if (obj instanceof CuxGroupPartitioner) {return ((CuxGroupPartitioner) obj).partitions == partitions;}return false;}
}
查看分区分布情况工具类:
(1)Scala:
import org.apache.spark.sql.{Dataset, Row}/*** Created by lesly.lai on 2017/12FeeTask/25.*/
class SparkRddTaskInfo {def getTask(dataSet: Dataset[Row]) {val size = dataSet.rdd.partitions.lengthprintln(s"==> partition size: $size " )import scala.collection.Iteratorval showElements = (it: Iterator[Row]) => {val ns = it.toSeqimport org.apache.spark.TaskContextval pid = TaskContext.get.partitionIdprintln(s"[partition: $pid][size: ${ns.size}] ${ns.mkString(" ")}")}dataSet.foreachPartition(showElements)}
}
(2)Java:
import org.apache.spark.TaskContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;public class SparkRddTaskInfo {public static void getTask(Dataset<Row> dataSet) {int size = dataSet.rdd().partitions().length;System.out.println("==> partition size:" + size);JavaRDD<Row> dataRDD = dataSet.toJavaRDD();dataRDD.foreachPartition((VoidFunction<Iterator<Row>>) rowIterator -> {List<String> mappedRows = new ArrayList<String>();int count = 0;while (rowIterator.hasNext()) {Row next = rowIterator.next();String id = next.getAs("id");String partitionKey = next.getAs("partition_key");String name = next.getAs("name");mappedRows.add(id + "/" + partitionKey+ "/" + name);}int pid = TaskContext.get().partitionId();System.out.println("[partition: " + pid + "][size: " + mappedRows.size() + "]" + mappedRows);});}
}
调用方式:
import com.vip.spark.db.ConnectionInfos;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.Column;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;import java.util.List;
import java.util.stream.Collectors;/*** Created by lesly.lai on 2018/7/23.*/
public class SparkSimpleTestPartition {public static void main(String[] args) throws InterruptedException {SparkSession sparkSession = SparkSession.builder().appName("Java Spark SQL basic example").getOrCreate();// 原始数据集Dataset<Row> originSet = sparkSession.read().jdbc(ConnectionInfos.TEST_MYSQL_CONNECTION_URL, "people", ConnectionInfos.getTestUserAndPasswordProperties());originSet.selectExpr("split(rowKey, '_')[0] as id","concat(split(rowKey, '_')[0],'_',split(rowKey, '_')[1]) as partition_key","split(rowKey, '_')[1] as name".createOrReplaceTempView("people");// 获取分区分布情况工具类SparkRddTaskInfo taskInfo = new SparkRddTaskInfo();Dataset<Row> groupSet = sparkSession.sql(" select partition_key from people group by partition_key");List<Object> groupList = groupSet.javaRDD().collect().stream().map(row -> row.getAs("partition_key")).collect(Collectors.toList());// 创建pairRDD 目前只有pairRdd支持自定义partitioner,所以需要先转成pairRddJavaPairRDD pairRDD = originSet.javaRDD().mapToPair(row -> {return new Tuple2(row.getAs("partition_key"), row);});// 指定自定义partitionerJavaRDD javaRdd = pairRDD.partitionBy(new CuxGroupPartitioner(groupList)).map(new Function<Tuple2<String, Row>, Row>(){@Overridepublic Row call(Tuple2<String, Row> v1) throws Exception {return v1._2;}});Dataset<Row> result = sparkSession.createDataFrame(javaRdd, originSet.schema());// 打印分区分布情况taskInfo.getTask(result);}
}
四、Dataset 重分区并且获取分区数
System.out.println("1-->"+rowDataset.rdd().partitions().length);System.out.println("1-->"+rowDataset.rdd().getNumPartitions());Dataset<Row> hehe = rowDataset.coalesce(1);System.out.println("2-->"+hehe.rdd().partitions().length);System.out.println("2-->"+hehe.rdd().getNumPartitions());
运行结果:
1-->29
1-->29
2-->2
2-->2
注意:在使用 repartition()
时两次打印的结果相同:
print(rdd.getNumPartitions())
rdd.repartition(100)
print(rdd.getNumPartitions())
产生上述问题的原因有两个:
首先 repartition()
是惰性求值操作,需要执行一个 action
操作才可以使其执行。
其次,repartition()
操作会返回一个新的 rdd,并且新的 rdd 的分区已经修改为新的分区数,因此必须使用返回的 rdd,否则将仍在使用旧的分区。
修改为:rdd2 = rdd.repartition(100)
参考:repartition() is not affecting RDD partition size
相关文章:

Dataset 的一些 Java api 操作
文章目录 一、使用 Java API 和 JavaRDD<Row> 在 Spark SQL 中向数据帧添加新列二、foreachPartition 遍历 Dataset三、Dataset 自定义 Partitioner四、Dataset 重分区并且获取分区数 一、使用 Java API 和 JavaRDD 在 Spark SQL 中向数据帧添加新列 在应用 mapPartition…...

Vue + Element UI 前端篇(十一):第三方图标库
Vue Element UI 实现权限管理系统 前端篇(十一):第三方图标库 使用第三方图标库 用过Elment的同鞋都知道,Element UI提供的字体图符少之又少,实在是不够用啊,幸好现在有不少丰富的第三方图标库可用&…...

HDFS:Hadoop文件系统(HDFS)
Hadoop文件系统(HDFS)是一个分布式文件系统,主要用于存储和处理大规模的数据集。HDFS是Apache Hadoop的核心组件之一,能够支持上千个节点的集群,并能够处理PB级别的数据。 HDFS将大文件切割成小的数据块(默…...

SpringMvc--综合案例
目录 1.SpringMvc的常用注解 2.参数传递 基础类型(String) 创建一个paramController类: 创建一个index.jsp 测试结果 复杂方式 编辑 测试结果 RequestParam 测试结果 PathVariable 测试结果 RequestBody pom.xml依赖导入 输…...

工业4.0时代生产系统对接集成优势,MES和ERP专业一体化管理-亿发
在现代制造业中,市场变化都在不断加速。企业面临着不断加强生产效率、生产质量和快速适应市场需求的挑战。在制造行业,日常管理中的ERP系统、MES系统就显得尤为重要。越来越多的企业正在采用MES系统和ERP管理系统的融合,以实现智能化生产管理…...

IT运维监控系统和网络运维一样吗
IT运维监控系统和网络运维不是一样的。IT运维监控系统是一系列IT管理产品的统称,它所包含的产品功能强大、易于使用、解决方案齐全,可一站式满足用户的各种IT管理需求。而网络运维是指对网络设备进行监控、维护和管理,包括硬件故障的排除、软…...

c语言flag的使用
flag在c语言中标识某种状态或记录某种信息,可以通过修改flag中来控制程序流程,判断某种状态是否存在或记录某种信息 操作:(1)初始化 (2)赋值 (3)判断 (4)修改 (5)去初始化 #include <stdlib.h>int power_state_check;int main() {int i 0;power_state_check…...

docker push image harbor http 镜像
前言 搭建的 harbor 仓库为 http 协议,在本地登录后,推送镜像发生如下报错: docker push 192.168.xx.xx/test/grafana:v10.1.1 The push refers to repository [192.168.xx.xx/test/grafana] Get "https://192.168.xx.xx/v2/": dia…...

羊城杯2023 部分wp
目录 D0nt pl4y g4m3!!!(php7.4.21源码泄露&pop链构造) Serpent(pickle反序列化&python提权) ArkNights(环境变量泄露) Ez_misc(win10sinpping_tools恢复) D0nt pl4y g4m3!!!(php7.4.21源码泄露&pop链构造) 访问/p0p.php 跳转到了游戏界面 应该是存在302跳转…...

解读Java对Execl读取数据
1.读取execl文件路径,或者打开execl // 初始化文件流FileInputStream in = null;in = new FileInputStream(new File(path));workbook = new XSSFWorkbook(in);sheet = workbook.getSheetAt(0);rows = sheet.getPhysicalNumberOfRows(); 2.读取execl中sheet页数,即获取当前E…...

RHCE——十七、文本搜索工具-grep、正则表达式
RHCE 一、文本搜索工具--grep1、作用2、格式3、参数4、注意5、示例5.1 操作对象文件:/etc/passwd5.2 grep过滤命令示例 二、正则表达式1、概念2、基本正则表达式2.1 常见元字符2.2 POSIX字符类2.3 示例 3、扩展正则表达式3.1 概念3.2 示例 三、作业1、作业一2、作业…...

小程序实现摄像头拍照 + 水印绘制
文章标题 01 功能说明02 使用方式 & 效果图2.1 基础用法2.2 拍照 底部定点水印 预览2.3 拍照 整体背景水印 预览 03 全部代码3.1 页面布局 html3.2 业务核心 js3.3 基础样式 css 01 功能说明 需求:小程序端需要调用前置摄像头进行拍照,并且将拍…...

SpringMVC:从入门到精通,7篇系列篇带你全面掌握--三.使用SpringMVC完成增删改查
🥳🥳Welcome Huihuis Code World ! !🥳🥳 接下来看看由辉辉所写的关于SpringMVC的相关操作吧 目录 🥳🥳Welcome Huihuis Code World ! !🥳🥳 效果演示 一.导入项目的相关依赖 二.…...

ABAP GN_DELIVERY_CREATE 报错 VL 561
GN_DELIVERY_CREATE 去创建内向交货单的时候。 报错 VL 561 Essential transfer parameters are missing in record 表示一些必输字段没输入 诸如一些,物料号。单位。等一些字段 输入之后即可 DATA: ls_return TYPE bapireturn.DATA: lt_return TYPE STANDARD T…...

AWS-数据库迁移工具DMS-场景:单账号跨区域迁移RDS for Mysql
参考文档: 分为几个环节: 要使用 AWS DMS 迁移至 Amazon RDS 数据库实例: 1.创建复制实例 有坑内存必须8g或者以上,我测试空库 都提示内存不足 2.创建目标和源终端节点 目标空库也得自己创建哈 3.刷新源终端节点架构 4.创建迁…...

【漏洞复现】E-office文件包含漏洞
漏洞描述 Weaver E-Office是中国泛微科技(Weaver)公司的一个协同办公系统。泛微 E-Office 是一款标准化的协同 OA 办公软件,实行通用化产品设计,充分贴合企业管理需求,本着简洁易用、高效智能的原则,为企业快速打造移动化、无纸化、数字化的办公平台。 该漏洞是由于存在…...

Linux 系统常用命令总结
目录 提示一、文件和目录操作二、文件查看和编辑三、文件权限管理四、文件压缩和解压缩五、查找文件六、系统信息和状态七、用户和权限管理八、网络相关操作九、包管理十、进程管理十一、时间和日期十二、系统关机和重启十三、文件传输十四、其他常用命令 提示 [ ]:…...

【数据结构】树的基础入门
文章目录 什么是树树的常见术语树的表示树的应用 什么是树 相信大家刚学数据结构的时候最先接触的就是顺序表,栈,队列等线性结构. 而树则是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合 非线性 体现在它是由n个有限结点(可以是零个结点)组成一个具有层次关…...

【多线程】Thread的常用方法
Thread的常用方法 1.构造器 Thread提供的常见构造器说明public Thread(String name)可以为当前线程指定名称public Thread(Runnable target)封装Runnable对象成为线程对象public Thread(Runnable target,String name)封装Runnable对象成为线程对象,并指定线程名称…...

windows 下docker安装宝塔镜像 宝塔docker获取镜像
1. docker 安装宝塔 打开链接:https://www.docker.com/get-started,找对应的版本下载docker,安装docker打开百度云盘:链接:https://pan.baidu.com/s/1DGIjpKkNDAmy4roaKGLA_w 提取码:u8bi 2. 设置镜像 点…...

【FusionInsight 迁移】HBase从C50迁移到6.5.1(01)迁移概述
【FusionInsight 迁移】HBase从C50迁移到6.5.1(01)迁移概述 HBase从C50迁移到6.5.1(01)迁移概述迁移范围迁移前的准备HDFS文件检查确认HBase迁移目录确保数据落盘停止老集群HBase服务停止新集群HBase服务 HBase从C50迁移到6.5.1&a…...

ETCD集群搭建(实践可用)
概述 etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。 - 官方网址: Documentation versions | etcd 准备cfssl证书生成工具 cfssl是一个开源的证书管理工具,使用json文件生成证书. 在任意一…...

基于stm32f103rct6的呼吸灯实现
一、PWM 我们可以通过改变灯的有效电压占空比来实现呼吸灯效果。其中我们要用到PWM(脉宽调制),通过pwm我们可以来改变高电平的占空比 占空比:在一个周期中,高电平所占整个周期的百分比 具体如图: 当我们用…...

关于火绒邮件监控引起的扫描任意IP会有25和110端口反馈
之前测试过公司的外网IP,因为之前一直很注意对外映射的端口,都限制了可以访问的IP地址和端口,所以之前扫描的时候是一个端口都扫描不出来的。最近闲的无事,想着再扫描试试,结果发现居然开放了25和110端口,我…...

物联网应用中蓝牙模块怎么选?_蓝牙模块厂家
在蓝牙模块选型前期,一定要了解应用场景以及需要实现的功能(应用框图),以及功能实现过程中所能提供调用的接口(主从设备,功能),考虑模块供电,尺寸,接收灵敏度…...

Mysql远程登录报错:Host ‘192.168.137.1‘ is not allowed to connect to this MySQL server
连接失败是因为数据库没有对指定的ip的服务器地址的连接进行授权,许哦一需要先进行授权。 1. 改表 先登录登录数据库:mysql -u root -p mysql>use mysql;mysql>update user set host % where user root;mysql>FLUSH PRIVILEGES; 2.授权 …...

vue去掉循环数组中的最后一组的某个样式style/class
vue去掉循环数组中的最后一组的某个样式style/class 需求:要实现这样的排列 现状 发现,最后一个格子并没有跟下面绿色线对齐。 最后发现 是因为 每个格子都给了 margin-right:36px,影响到了最后一个格子 所以要 将最后一个格子的…...

Vue2面试题100问
Vue2面试题100问 Vue2面试题100问1.简述一下你对Vue的理解2.声明式和命令式编程概念的理解3.Vue 有哪些基本特征4.vue之防止页面加载时看到花括号解决方案有哪几种?5.Vue中v-for与v-if能否一起使用?6.vue中v-if与v-show的区别以及使用场景7.v-on可以监听…...

开机启动应用
windows 建立快捷方式 winr 输入shell:startup 将快捷方式复制进来 就可以了 如果你有ccleaner,也可以看到...

RK3588平台产测之ArmSoM-W3 DDR压力测试
1. 简介 RK3588从入门到精通 ArmSoM团队在产品量产之前都会对产品做几次专业化的功能测试以及性能压力测试,以此来保证产品的质量以及稳定性 优秀的产品都要进行多次全方位的功能测试以及性能压力测试才能够经得起市场的检验 2. 环境介绍 硬件环境: …...