归并排序和快速排序的两种实现
在此之前我们已经介绍过归并排序和快速排序:浅谈归并排序与快速排序,但其中的实现都是基于递归的。本文将重新温故这两种算法并给出基于迭代的实现。
目录
- 1. 归并排序
- 1.1 基于递归
- 1.2 基于迭代
- 2. 快速排序
- 2.1 基于递归
- 2.2 基于迭代
1. 归并排序
1.1 基于递归
归并排序的核心是二路归并,实现二路归并需要一个额外的辅助数组,因此空间复杂度是 O ( n ) O(n) O(n)。
void merge(vector<int>& a, int l, int mid, int r, vector<int>& tmp) {int i = l, j = mid + 1, k = l;while (i <= mid && j <= r) {if (a[i] <= a[j]) tmp[k++] = a[i++];else tmp[k++] = a[j++];}while (i <= mid) tmp[k++] = a[i++];while (j <= r) tmp[k++] = a[j++];for (int i = l; i <= r; i++) a[i] = tmp[i];
}
该函数会对数组 a 的 [l, mid] 和 [mid + 1, r] 两部分进行二路归并,其中辅助数组 tmp 的大小与 a 相同。
有了 merge 函数,我们就可以很方便的实现归并排序了:
void merge_sort(vector<int>& a, int l, int r, vector<int>& tmp) {if (l >= r) return;int mid = l + r >> 1;merge_sort(a, l, mid, tmp), merge_sort(a, mid + 1, r, tmp);merge(a, l, mid, r, tmp);
}
1.2 基于迭代
很明显,基于递归的实现是自顶向下的,而基于迭代的实现是自底向上的。
我们可以先枚举区间长度,再枚举区间左端点。一开始每个区间的长度是 1 1 1,我们每次对相邻的两个区间进行二路归并,每归并一次区间的长度就是原先的两倍,所以枚举区间长度时变量 len 的更新方式为 len *= 2。
对于区间左端点,每合并完两个区间后,左端点就要更新成下下个区间,如下图所示:
还需保证 mid < n - 1,即 l < n - len。
void merge_sort(vector<int>& a) {int n = a.size();vector<int> tmp(n);for (int len = 1; len < n; len *= 2) {for (int l = 0; l < n - len; l += 2 * len) {int mid = l + len - 1;int r = min(l + 2 * len - 1, n - 1);merge(a, l, mid, r, tmp);}}
}
归并排序的时间复杂度是 O ( n log n ) O(n\log n) O(nlogn),无论是递归还是迭代,空间复杂度都是 O ( n ) O(n) O(n)。
2. 快速排序
2.1 基于递归
void quick_sort(vector<int>& a, int l, int r) {if (l >= r) return;int mid = l + r >> 1;int i = l - 1, j = r + 1, x = a[mid];while (i < j) {while (a[++i] < x);while (a[--j] > x);if (i < j) swap(a[i], a[j]);}quick_sort(a, l, j), quick_sort(a, j + 1, r);
}
2.2 基于迭代
void quick_sort(vector<int>& a, int l, int r) {if (l >= r) return;stack<pair<int, int>> stk;stk.emplace(l, r);while (!stk.empty()) {auto [l, r] = stk.top();stk.pop();if (l < r) {int mid = l + r >> 1;int i = l - 1, j = r + 1, x = a[mid];while (i < j) {while (a[++i] < x);while (a[--j] > x);if (i < j) swap(a[i], a[j]);}stk.emplace(l, j);stk.emplace(j + 1, r);}}
}
时间复杂度是 O ( n log n ) O(n\log n) O(nlogn),空间复杂度是 O ( log n ) O(\log n) O(logn)。
相关文章:
归并排序和快速排序的两种实现
在此之前我们已经介绍过归并排序和快速排序:浅谈归并排序与快速排序,但其中的实现都是基于递归的。本文将重新温故这两种算法并给出基于迭代的实现。 目录 1. 归并排序1.1 基于递归1.2 基于迭代 2. 快速排序2.1 基于递归2.2 基于迭代 1. 归并排序 1.1 基…...
C#,《小白学程序》第十四课:随机数(Random)第一,几种随机数的计算方法与代码
1 文本格式 /// <summary> /// 《小白学程序》第十四课:随机数(Random)第一,几种随机数的计算方法与代码 /// 本课初步接触一下随机数。 /// </summary> /// <param name"sender"></param> ///…...
[杂谈]-快速了解Modbus协议
快速了解Modbus协议 文章目录 快速了解Modbus协议1、为何 Modbus 如此受欢迎2、范围和数据速率3、逻辑电平4、层数5、网络与通讯6、数据帧格式7、数据类型8、服务器如何存储数据9、总结 Modbus 是一种流行的低速串行通信协议,广泛应用于自动化行业。 该协议由 Mo…...
WhatsApp的两个商业模式该如何选择
WhatsApp Business 是什么 目前 WhatsApp 提供两种商业模式,企业应根据自身需求选择相应版本。 第一个版本是 WhatsApp Business:初创企业只需一个手机应用程序,便可以个体单位与客户轻松互动; 另一个版本是 WhatsApp Business APIÿ…...
动态表单设计
动态表单设计 背景方案讨论基于上面分析,对比调研,自定义动态表单数据模型表单详解(一) 表单模板:jim_dynamic_form(二)表单数据类型:jim_form_data_type(三)…...
JAR will be empty - no content was marked for inclusion!
现象 在对自建pom依赖组件打包时,出现JAR will be empty - no content was marked for inclusion!错误。 方案 在pom中怎么加packaging标签内容为pom,标识只打包pom文件 <?xml version"1.0" encoding"UTF-8"?> ...<grou…...
软件生命周期及流程【软件测试】
软件的生命周期 软件生命周期是软件开始研制到最终被废弃不用所经历的各个阶段。 瀑布型生命周期模型 规定了它们自上而下、相互衔接的固定次序,如同瀑布流水,逐级下落,具有顺序性和依赖性。每个阶段规定文档并需进行评审。 特点ÿ…...
2023高教社杯数学建模E题思路代码 - 黄河水沙监测数据分析
# 1 赛题 E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响, 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位…...
双翌保养码使用指南方法(一)
保养码使用指南一 为了确保软件的正常运行和有效使用,正确地使用保养码是至关重要的。以下是保养码使用的简单指南,以帮助您进行正确的操作。 1. 打开软件入口:首先,在您的电脑上打开文件夹,并找到s-y softactive tool…...
hive指定字段插入数据,包含了分区表和非分区表
1、建表 语句如下: CREATE EXTERNAL TABLE ods_lineitem_full (l_shipdate date,l_orderkey bigint,l_linenumber int,l_partkey int,l_suppkey int,l_quantity decimal(15, 2),l_extendedprice decimal(15, 2),l_discount de…...
浏览器端vscode docker搭建(附带python环境)
dockerfile from centos:7 #安装python环境 run yum -y install wget openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel zlib-devel libffi-devel gcc make run wget https://www.python.org/ftp/python/3.9.0/Python-3.9.0.tgz run tar -xvf Python-3.9.…...
Echarts图表跟随父容器的变化自适应
如果页面中有多个图表 隐藏/展开左边侧边栏echarts图表自适应 <div class"line"><div class"title">制冷站关键参数</div><div id"chartLine1" style"width: 100%;height:85%;"></div></div><…...
【多线程】ThreadLocal是什么?有哪些使用场景?使用ThreadLocal需要注意些什么?
文章目录 前言一、ThreadLocal 是什么?二、有哪些使用场景?三、实现原理四、在线程池中使用 ThreadLocal 为什么可能导致内存泄露呢?五、线程池中,如何正确使用 ThreadLocal?六、ThreadLocal 核心方法 前言 一、Threa…...
一种基于动态代理的通用研发提效解决方案
作为一名研发人员,除了业务开发之外,研发提效是一个永恒的话题,而女娲正是这一话题下进行的一次全面的剖析和实践。 作者:张全洪(钝悟) 一、女娲是什么 女娲是业务研发同学(开发、测试、运维)在软件迭代的…...
【vue3】一些关于hooks的使用经验
前言 最近接到了一个需求,隔壁嵌入式部门希望我们用前端解析渲染Kconfig表单。这篇文章用来记录一下本次使用hook pinia vue3的经验 hooks hooks的概念最早是在 React 中听到的,虽然早些时间也写过一点react,但也只是照葫芦画瓢…...
面试系列 - Java 并发容器详解
Java 并发容器是一组用于在多线程环境下安全访问和操作数据的数据结构。它们提供了线程安全的集合和映射,使开发者能够更轻松地处理并发编程问题。 一、Java并发容器 ConcurrentHashMap: 它是一个高效的并发哈希表,支持多线程并发操作而不需…...
使用动态住宅代理还能带来哪些好处?
一、什么是动态住宅代理ip 动态住宅代理是一种代理技术,它利用代理服务器中转用户和目标服务器之间的网络流量,实现用户真实位置的屏蔽。代理提供商会有自己的ip大池子,当你通过代理服务器向网站发送请求时,服务器会从池子中选中…...
笙默考试管理系统-MyExamTest----codemirror(18)
笙默考试管理系统-MyExamTest----codemirror(18) 目录 一、 笙默考试管理系统-MyExamTest----codemirror 二、 笙默考试管理系统-MyExamTest----codemirror 三、 笙默考试管理系统-MyExamTest----codemirror 四、 笙默考试管理系统-MyExamTest---…...
TGA格式文件转材质
今天淘宝上买了一个美女的模型,是blender的源文件,上面说有fbx格式的。我用unity,所以觉得应该可以用。文件内容如下图: FBX文件夹打开后,内容如下图所示,当时就预感到可能没有色彩。 unity打开后果然发现只…...
IP应用场景查询API:深入了解网络用户行为的利器
前言 随着数字时代的不断发展,互联网已经成为人们生活的重要组成部分。而随着越来越多的业务和社交活动迁移到在线平台上,了解和理解网络用户行为变得至关重要。为了满足这个需求,IP 应用场景查询 API 崭露头角,成为深入了解网络…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
