当前位置: 首页 > news >正文

02-zookeeper分布式锁案例

1 Zookeeper分布式案例

1.1 Zookeeper分布式锁原理

核心思想:当客户端要获取锁,则创建节点,使用完锁,则删除该节点。

当我们假设根节点/ 下有/locks节点时

1)客户端获取锁时,在locks节点下创建临时顺序节点。

2)然后获取lock下面的所有子节点,客户端获取到所有的子节点之后,如果发现自己创建的子节点序号最小,那么就认为该客户端获取到了锁。(即需要小的优先)使用完锁后,将删除该结点。

3)如果发现自己创建的节点并非locks所有子节点中最小的,说明自己还没获取到锁,此时客户端需要找到比自己小的那个节点,同时对其注册事件监听器,监听删除事件。

4)如果发现比自己小的那个节点被删除,则客户端的Watcher会收到相应通知,此时再次判断自己创建的节点是否是locks子节点中序号最小的,如果是则获取到了锁,如果不是则重复以上步骤继续获取到比自己小的一个节点并注册监听。

1.2 分布式锁案例分析

  • 客户端获取到锁时创建临时顺序节点 create -e -s /locks/seq-
  • 接收到请求后,在/locks节点下创建一个临时顺序节点
  • 判断自己是不是当前节点下最小的节点,如果是,获取到锁;如果不是,对前一个节点进行监听
  • 获取到锁,处理完业务以后,delete节点释放锁,然后下面的节点将会收到通知,重复上述判断

1.2.1 原生Zookeeper实现代码实现

package com.clear.case2;import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;/*** 分布式锁案例*/
public class DistributedLock {private final String connectString = "kk01:2181,kk02:2181,kk01:2181";private final int sessionTimeout = 2000;private final ZooKeeper zk;private CountDownLatch countDownLatch = new CountDownLatch(1);private CountDownLatch waitLatch = new CountDownLatch(1);private String waitPath;private String currentMode;public DistributedLock() throws IOException, InterruptedException, KeeperException {// 获取连接zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {@Overridepublic void process(WatchedEvent event) {//  countDownLatch 如果连接上zk,可以释放if (event.getState() == Event.KeeperState.SyncConnected) {countDownLatch.countDown();}// waitLatch 可以释放if (event.getType() == Event.EventType.NodeDeleted && event.getPath().equals(waitPath)) {waitLatch.countDown();}System.out.println("");}});// 等待zk正常连接后再执行后续程序countDownLatch.await();// 判断根节点/locks是否存在Stat stat = zk.exists("/locks", false);if (stat == null) {// 创建根节点(根节点为持久节点)zk.create("/locks", "locks".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);}}// 对zk加锁public void zkLock() {// 创建对应的临时带序号的节点try {currentMode = zk.create("/locks/" + "seq-", null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);// 判断创建的节点是否是根目录下最小节点,如果是获得锁;如果不是,监听它序号前一个节点List<String> children = zk.getChildren("/locks", false);// 如果children只有一个值,那就直接获取锁,如果有多个节点,那就需要判断谁最小if (children.size() == 1) {return;} else {Collections.sort(children);// 获取节点名称 seq-0000...String thisNode = currentMode.substring("/locks/".length());// 通过 seq-0000... 获取其在集合children 中的位置int index = children.indexOf(thisNode);// 判断if (index == -1) {System.out.println("数据异常");} else if (index == 0) {// 就一个节点,获取到了锁return;} else {// 监听它前一个节点waitPath = "/locks/" + children.get(index - 1);zk.getData(waitPath, true, null);// 等待监听waitLatch.await();return;}}} catch (KeeperException e) {e.printStackTrace();} catch (InterruptedException e) {e.printStackTrace();}}// 对zk解锁public void unZkLock() {// 删除节点try {zk.delete(currentMode, -1);} catch (InterruptedException e) {e.printStackTrace();} catch (KeeperException e) {e.printStackTrace();}}
}

1.2.2 测试代码

package com.clear.case2;import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;/*** 分布式锁案例*/
public class DistributedLockTest {public static void main(String[] args) throws InterruptedException, IOException, KeeperException {final DistributedLock lock1 = new DistributedLock();final DistributedLock lock2 = new DistributedLock();new Thread(new Runnable() {@Overridepublic void run() {try {lock1.zkLock();System.out.println("线程1 启动,获取到锁");Thread.sleep(5000);lock1.unZkLock();System.out.println("线程1 释放锁");} catch (InterruptedException e) {e.printStackTrace();}}}).start();new Thread(new Runnable() {@Overridepublic void run() {try {lock2.zkLock();System.out.println("线程2 启动,获取到锁");Thread.sleep(5000);lock2.unZkLock();System.out.println("线程2 释放锁");} catch (InterruptedException e) {e.printStackTrace();}}}).start();}
}

启动后,结果如下

线程1 启动,获取到锁
线程1 释放锁线程2 启动,获取到锁
线程2 释放锁

两个线程不会同时得到锁,此致,分布式锁案例完成

1.2.3 Curator 框架实现分布式案例

1)原生的 Java API 开发存在的问题

  • 会话连接是异步的,需要自己去处理,比如使用 CountDownLatch
  • Watch 需要重复注册,不然就不能生效
  • 开发的复杂性还是比较高的
  • 不支持多节点删除和创建。需要自己去递归

2)Curator是一个专门解决分布式锁的框架,解决了原生Java API 开发分布式遇到的问题

Cutator官方文档 https://curator.apache.org/index.html

1、导入依赖

<!-- curator--><dependency><groupId>org.apache.curator</groupId><artifactId>curator-framework</artifactId><version>4.0.0</version></dependency><dependency><groupId>org.apache.curator</groupId><artifactId>curator-recipes</artifactId><version>4.0.0</version></dependency><dependency><groupId>org.apache.curator</groupId><artifactId>curator-client</artifactId><version>4.0.0</version></dependency>

2、代码实现

package com.clear.case3;import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.locks.InterProcessMutex;
import org.apache.curator.retry.ExponentialBackoffRetry;
import org.apache.log4j.Logger;public class CuratorLockTest {private final static Logger logger = Logger.getLogger(CuratorLockTest.class);public static void main(String[] args) {// 创建分布式锁1InterProcessMutex lock1 = new InterProcessMutex(getCuratorFramework(), "/locks");// 创建分布式锁2InterProcessMutex lock2 = new InterProcessMutex(getCuratorFramework(), "/locks");new Thread(new Runnable() {@Overridepublic void run() {try {lock1.acquire();System.out.println("线程1 获取到锁");lock1.acquire();System.out.println("线程1 再次获取到锁");Thread.sleep(5000);lock1.release();System.out.println("线程1 释放锁");lock1.release();System.out.println("线程1 再次释放锁");} catch (Exception exception) {exception.printStackTrace();}}}).start();new Thread(new Runnable() {@Overridepublic void run() {try {lock2.acquire();System.out.println("线程2 获取到锁");lock2.acquire();System.out.println("线程2 再次获取到锁");Thread.sleep(5000);lock2.release();System.out.println("线程2 释放锁");lock2.release();System.out.println("线程2 再次释放锁");} catch (Exception exception) {exception.printStackTrace();}}}).start();}private static CuratorFramework getCuratorFramework() {CuratorFramework client = CuratorFrameworkFactory.builder().connectString("kk01:2181,kk02:2181,kk03:2181").connectionTimeoutMs(2000).sessionTimeoutMs(2000).retryPolicy(new ExponentialBackoffRetry(3000, 3)).build();// 启动客户端client.start();logger.info("zookeeper启动成功");return client;}
}

结果如下

线程2 获取到锁
线程2 再次获取到锁
线程2 释放锁
线程2 再次释放锁
线程1 获取到锁
线程1 再次获取到锁

相关文章:

02-zookeeper分布式锁案例

1 Zookeeper分布式案例 1.1 Zookeeper分布式锁原理 核心思想&#xff1a;当客户端要获取锁&#xff0c;则创建节点&#xff0c;使用完锁&#xff0c;则删除该节点。 当我们假设根节点/ 下有/locks节点时 1&#xff09;客户端获取锁时&#xff0c;在locks节点下创建临时顺序…...

【Spring传播机制底层原理】

一、Spring的事务传播机制 Spring的事务传播机制是Spring框架中最核心的机制之一&#xff0c;它能够灵活地控制多个事务方法的执行顺序、提交或回滚等行为。在Spring中&#xff0c;事务是通过TxManager来管理的&#xff0c;TxManager是一个接口&#xff0c;提供了开启、提交、…...

python通过tkinter制作词云图工具

一、基本功能 1.采取上传文本文档&#xff08;仅支持.txt格式&#xff09;的方式统计词频 2.背景图形样式可选择已经设定好的&#xff0c;也可选择本地上传的&#xff08;支持.png .jpg .jpeg格式&#xff09; 3.本地上传的图片需要进行抠图处理&#xff0c;并将抠图结果保存…...

Java-钉钉订阅事件

文章目录 背景什么是钉钉订阅事件钉钉订阅事件的应用场景 整体思路查看钉钉文档 什么是钉钉回调钉钉回调具体实操创建自己的应用钉钉回调开发过程中遇到的问题 总结 背景 最近需要做一个业务&#xff1a;钉钉组织架构下添加人员之后&#xff0c;要对该人员的数据信息做一个处理…...

【DataV/echarts】vue中使用,修改地图和鼠标点击部分的背景色

引入&#xff1a;使用 DataV 引入地图的教程是参考别人的&#xff0c;主要介绍修改地图相关的样式&#xff1b; 引入地图 是参考别人的&#xff0c;这里自己再整理一遍&#xff0c;注意需要安装 5 版本以上的 echarts&#xff1b; DataV 网址&#xff1a;https://datav.aliyun.…...

系统设计类题目汇总四

25 十个异步入库任务&#xff0c;如何保证他们原子入库? 了解了你的问题背景&#xff0c;确保10个异步入库任务原子性执行&#xff08;即要么全部成功&#xff0c;要么全部失败&#xff09;有以下几种方法&#xff1a; 数据库事务&#xff1a; 如果所有的入库操作都是在同一个…...

【C++心愿便利店】No.5---构造函数和析构函数

文章目录 前言一、类的6个默认成员函数二、构造函数三、析构函数 前言 &#x1f467;个人主页&#xff1a;小沈YO. &#x1f61a;小编介绍&#xff1a;欢迎来到我的乱七八糟小星球&#x1f31d; &#x1f4cb;专栏&#xff1a;C 心愿便利店 &#x1f511;本章内容&#xff1a;类…...

微软研究院团队获得首届AI药物研发算法大赛总冠军

编者按&#xff1a;AI 药物研发是人工智能未来应用的重要方向之一。自新冠病毒&#xff08;SARS-CoV-2&#xff09;首次爆发以来&#xff0c;新冠病毒的小分子药物研发备受关注&#xff0c;于近期举行的首届 AI 药物研发算法大赛便聚焦于此。在比赛中&#xff0c;来自微软研究院…...

redis实战篇之导入黑马点评项目

1. 搭建黑马点评项目 链接&#xff1a;https://pan.baidu.com/s/1Q0AAlb4jM-5Fc0H_RYUX-A?pwd6666 提取码&#xff1a;6666 1.1 首先&#xff0c;导入SQL文件 其中的表有&#xff1a; tb_user&#xff1a;用户表 tb_user_info&#xff1a;用户详情表 tb_shop&#xff1a;商户…...

【C++】详解红黑树并模拟实现

前言&#xff1a; 上篇文章我们一起学习了AVL树比模拟实现&#xff0c;我们发现AVL树成功地把时间复杂度降低到了O(logN)。但是同时我们不难发现一个问题&#xff0c;在构建AVL树中我们也付出了不小的代价&#xff0c;频繁的旋转操作导致效率变低。为了解决这个问题&#xff0c…...

Matlab图像处理-最大类间方差阈值选择法(Otsu)

基本思想 最大类间方差阈值选择法又称为Otsu 算法&#xff0c;该算法是在灰度直方图的基础上用最小二乘法原理推导出来的&#xff0c;具有统计意义上的最佳分割阈值。它的基本原理是以最佳阈值将图像的灰度直方图分割成两部分&#xff0c;使两部分之间的方差取得最大值&#x…...

Spring Cloud(Finchley版本)系列教程(三) 服务消费者(Feign)

Spring Cloud(Finchley版本)系列教程(三) 服务消费者(Feign) 一、Feign和OpenFeign的对比 Feign是Netflix公司写的,是SpringCloud组件中的一个轻量级RESTful的HTTP服务客户端,是SpringCloud中的第一代负载均衡客户端。OpenFeign是SpringCloud自己研发的,在Feign的基础上支…...

AI图片生成 discord 使用midjourney

参考: 不用找咒语了&#xff01;Midjourney图生文功能特征解析&#xff0c;玩转Describe命令&#xff0c;快速搞定AI绘画_哔哩哔哩_bilibili 1 登录 discord 2 点发现 找 midjourney 3 创建 服务器 -> 亲自创建 4 选 仅供我和我的朋友使用 5 起个 服务器名字 6 加bot 由于…...

gitlab 点击Integrations出现500错误

背景&#xff1a;在新服务器重新搭建了gitlab&#xff0c;并导入原来gitlab的备份&#xff0c;在项目中点击点击Integrations出现500错误。 解决方法&#xff1a;1.进入新服务器&#xff0c;将 /etc/gitlab/gitlab-secrets.json重命名为 /etc/gitlab/gitlab-secrets.json.bak …...

【2023高教社杯】A题 定日镜场的优化设计 问题分析及数学模型

【2023高教社杯】A题 定日镜场的优化设计 问题分析及数学模型 1 题目 构建以新能源为主体的新型电力系统&#xff0c;是我国实现“碳达峰”“碳中和”目标的一项重要措施。塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。 定日镜是塔式太阳能光热发电站&#xff08;…...

rac异常hang死故障分析(sskgxpsnd2)

x86虚拟化的平台麒麟系统的一套RAC。事件梳理20:24左右&#xff0c;发现一个节点hang死&#xff0c;关闭操作没有响应。关闭hang死节点&#xff0c;另一个节点也发生hang死&#xff0c;然后重启了另一个节点。 无效分析部分 检查gi的alert日志 有一个很大跨度的时间回退 再看…...

2023.9.7 关于 TCP / IP 的基本认知

目录 网络协议分层 TCP/IP 五层&#xff08;四层&#xff09;模型 应用层 传输层 网络层&#xff08;互联网层&#xff09; 数据链路层&#xff08;网络接口层&#xff09; 物理层 网络数据传输的基本流程 网络协议分层 为什么需要分层&#xff1f; 分层之后&#xff0c…...

Python 图片处理

Step1 提取PDF中的图片&#xff0c;并另存 Step2 去除灰色纸张背景 import PyPDF2 from PIL import ImageEnhance,Image,ImageFilter import cv2 import numpy as np from skimage.filters import unsharp_mask from skimage.filters import gaussian from skimage.restora…...

信道估计 | 信道

文章目录 定义分类LS 估计MMSE估计LS vs MMSE 定义 从接收数据中将假定的某个信道模型参数估计出来的过程&#xff0c;如果信道是线性的&#xff0c;信道估计是对系统的冲击响应进行估计&#xff0c;需强调的是&#xff0c;信道估计是信道对输入信号影响的一种数学表示&#x…...

腾讯发布超千亿参数规模的混元大模型;深度学习与音乐分析与生成课程介绍

&#x1f989; AI新闻 &#x1f680; 腾讯发布超千亿参数规模的混元大模型 摘要&#xff1a;腾讯在2023腾讯全球数字生态大会上发布混元大模型&#xff0c;该模型拥有超千亿的参数规模和超2万亿 tokens 的预训练语料。混元大模型将支持多轮对话、内容创作、逻辑推理、知识增强…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...