C++算法 —— 分治(2)归并
文章目录
- 1、排序数组
- 2、数组中的逆序对
- 3、计算右侧小于当前元素的个数
- 4、翻转对
本篇前提条件是已学会归并排序
1、排序数组
912. 排序数组

排序数组也可以用归并排序来做。
vector<int> tmp;//写成全局是因为如果在每一次小的排序中都创建一次,更消耗时间和空间,设置成全局的就更高效vector<int> sortArray(vector<int>& nums) {tmp.resize(nums.size());mergeSort(nums, 0, nums.size() - 1);return nums;}//归并做法void mergeSort(vector<int>& nums, int left, int right){if(left >= right) return ;int mid = (left + right) / 2;mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];}while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int i = left; i <= right; i++){nums[i] = tmp[i - left];}}
2、数组中的逆序对
剑指 Offer 51. 数组中的逆序对

如果暴力枚举,一定是可以解决问题的,但肯定不用这个解法。选择逆序对,可以先把数组分成两部分,左半部分 + 右半部分的逆序对,以及再找左半部分的数字和右半部分数字成对的数,比如上面例子中,7和6,7和4就是这种情况。左 + 右 + 一左一右就是整体的逆序对数量。当这两半部分都处理完后,就扩大区间,继续上述操作。这个解法也就是利用归并排序,归并排序的思路就是划分到最小的区间,只有1个数,它一定是有序的,回到上一层,也就是2个数的区间,让它们排好序,在它右边的也是2个数的区间,重复和它一样的操作,这样两个区间都有序后,再往上走一层,来到4个数的区间,4个数,每一半都是有序的,将整体的4个数排成有序的,再往上走,来到8个数的区间,重复操作。
利用归并排序的思路,我们在两个区间都排成升序后,定义两个指针cur指向两个区间的开头,然后一左一右比较大小,如果cur1比cur2大,那么cur1之后都比cur2大,就可以一次性加上多个逆序对的个数。
下面的代码可以从最小的区间开始一个个代入来理解。从只有2个数的区间开始,走到递归处,分成2个只有1个数的区间,那就会返回0,两处递归走完,来到下面的循环,此时left是0,right是1,mid是0,带入进去会发现,最后的ret只会是0或者1,并且这2个数也在最后排好序了,返回后,来到上一层,也就是走左边递归的那行代码,然后再走右边,也是2个数,也是同样的操作,2个区间排好序了,4个数的区间就一左一右比较大小,找出逆序对,排好序,再走到上一层,8个数的区间也是如此。
class Solution {int tmp[50010];
public:int reversePairs(vector<int>& nums) {return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0;int ret = 0;//1. 找中间点,将数组分成两部分int mid = (left + right) >> 1;// [left, mid] [mid + 1, right]//2. 左边个数 + 排序 + 右边个数 + 排序ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);//3. 一左一右的个数int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right)//while体内原本是归并排序的代码,现在就多加一点{if(nums[cur1] <= nums[cur2]) tmp[i++] = nums[cur1++];else{ret += mid - cur1 + 1;tmp[i++] = nums[cur2++];}}//4. 处理排序while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left; j <= right; j++){nums[j] = tmp[j - left];//排序}return ret;}
};
3、计算右侧小于当前元素的个数
315. 计算右侧小于当前元素的个数

此题和上一个题有相同之处,也是分治,也是利用归并排序,这道题可以看作,当前元素后面,有多少比我小的,而上一题则是当前元素前面,有多少比我大的。仔细想一想,上一题是排升序,这一题排降序则更为合适。这题和上一题还有不同的地方。
cur1和cur2,排成降序,如果cur1 <= cur2,cur2++,因为我们要找比当前元素小的;如果cur1 > cur2,由于是降序,那么cur2之后的肯定都小,但这里不能加上ret,我们要返回一个数组,要把这个数加在当前元素的原始下标,因为数组已经被我们给排序了,所以要找原始下标。这里的做法就是从最一开始就除了tmp外,再定义一个数组,存储着原始下标,因为这时候还没开始排序,可以找得到,然后每次原数组元素变换位置,这个下标数组也跟着变换。
我们要定义四个数组,一个是结果数组,一个是原始下标数组,一个是辅助数组,也就是tmp,记录改动过的顺序,一个是下标辅助数组,记录改动后的下标顺序。在while循环中,每次更新tmp,下标辅助数组也跟着更新。如果cur1大于cur2,那么除了更新,还需要往结果数组中写入个数,要在当前元素的原始下标处写入个数,这里最好要画图来理解,画原始下标和下标变动后的图。在最后for循环中的排序,除了原数组nums,还有原始下标数组也要排序。
vector<int> index;//原始元素下标vector<int> res;//最终结果int tmp[500010];//排序辅助数组int tmpIndex[500010];//元素下标的辅助数组
public:vector<int> countSmaller(vector<int>& nums) {int sz = nums.size();index.resize(sz);res.resize(sz);for(int i = 0; i < sz; i++){index[i] = i;}mergeSort(nums, 0, sz - 1);return res;}void mergeSort(vector<int>& nums, int left, int right){if(left >= right) return ;int mid = (left + right) >> 1;mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i] = nums[cur2];tmpIndex[i++] = index[cur2++];}else {res[index[cur1]] += right - cur2 + 1;//经历了之前的排序,index已经记录下了最新的下标变动,这里就可以直接用cur1来获取正确的下标tmp[i] = nums[cur1];tmpIndex[i++] = index[cur1++];}}while(cur1 <= mid){tmp[i] = nums[cur1];tmpIndex[i++] = index[cur1++];}while(cur2 <= right){tmp[i] = nums[cur2];tmpIndex[i++] = index[cur2++];}for(int j = left; j <= right; j++){nums[j] = tmp[j - left];index[j] = tmpIndex[j - left];}}
4、翻转对
493. 翻转对

还是一样的思路。左半部分,右半部分,然后一左一右。不过这里的条件不一样。这里的解决办法有两个,一个是计算当前元素后面有多少元素的两倍比我小,另一个是计算当前元素之前,有多少元素的一半比我大,这两个的高效顺序分别是降序和升序。
第一个思路,cur1和cur2,找当前元素的后面,那就以cur1为重点,如果cur2的2倍大于等于cur1,cur2就往后走,如果小于,那么后面的肯定都小于。第二个思路,cur1和cur2,找当前元素的前面,那就以cur2为重点,如果cur1的一半比cur2小,那么cur1后的肯定都符合条件,如果cur1的一半大于cur2,那cur1往后走。最后合并两个有序数组。
int tmp[50010];
public:int reversePairs(vector<int>& nums) {return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0;int ret = 0;int mid = (left + right) >> 1;ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right); int cur1 = left, cur2 = mid + 1, i = left;//先计算翻转对,0还是left都行/*while(cur1 <= mid)//这里排降序,也可以排升序{while(cur2 <= right && nums[cur2] >= nums[cur1] / 2.0) cur2++;//2.0是为了防止除不尽if(cur2 > right) break;ret += right - cur2 + 1;cur1++;}*/while(cur2 <= right)//升序{while(cur1 <= mid && nums[cur2] >= nums[cur1] / 2.0) cur1++;if(cur1 > mid) break;ret += mid - cur1 + 1;cur2++;}cur1 = left, cur2 = mid + 1;//归位一下,开始排序while(cur1 <= mid && cur2 <= right){tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];//tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur2++] : nums[cur1++];}while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left; j <= right; j++){nums[j] = tmp[j];}return ret;}
结束。
相关文章:
C++算法 —— 分治(2)归并
文章目录 1、排序数组2、数组中的逆序对3、计算右侧小于当前元素的个数4、翻转对 本篇前提条件是已学会归并排序 1、排序数组 912. 排序数组 排序数组也可以用归并排序来做。 vector<int> tmp;//写成全局是因为如果在每一次小的排序中都创建一次,更消耗时间和…...
Hadoop YARN HA 集群安装部署详细图文教程
目录 一、YARN 集群角色、部署规划 1.1 集群角色--概述 1.2 集群角色--ResourceManager(RM) 1.3 集群角色--NodeManager(NM) 1.4 HA 集群部署规划 二、YARN RM 重启机制 2.1 概述 2.2 演示 2.2.1 不开启 RM 重启机制…...
BBS+商城项目的数据库表设计
本文章是对于BBS商城项目的数据库的初步设计,仅供参考! -- 创建用户表 CREATE TABLE Users (id bigint(20) PRIMARY KEY COMMENT 用户ID,username varchar(255) NOT NULL COMMENT 用户名,password varchar(255) NOT NULL COMMENT 密码,status int(1) DE…...
如何使用Savitzky-Golay滤波器进行轨迹平滑
一、Savitzky-Golay滤波器介绍 Savitzky-Golay滤波器是一种数字滤波器,用于平滑数据,特别是在信号处理中。它基于最小二乘法的思想,通过拟合数据到一个滑动窗口内的低阶多项式来实现平滑。这种滤波器的优点是它可以保留数据的高频信息&#…...
Nomad系列-Nomad网络模式
系列文章 Nomad 系列文章 概述 Nomad 的网络和 Docker 的也有很大不同, 和 K8s 的有很大不同. 另外, Nomad 不同版本(Nomad 1.3 版本前后)或是否集成 Consul 及 CNI 等不同组件也会导致网络模式各不相同. 本文详细梳理一下 Nomad 的主要几种网络模式 在Nomad 1.3发布之前&a…...
OpenCV项目开发实战--实现面部情绪识别对情绪进行识别和分类及详细讲解及完整代码实现
文末提供免费的完整代码下载链接 面部情绪识别(FER)是指根据面部表情对人类情绪进行识别和分类的过程。通过分析面部特征和模式,机器可以对一个人的情绪状态做出有根据的猜测。面部识别的这个子领域是高度跨学科的,借鉴了计算机视觉、机器学习和心理学的见解。 在这篇研究…...
Validate表单组件的封装
之前一直是直接去使用别人现成的组件库,也没有具体去了解人家的组件是怎么封装的,造轮子才会更好地提高自己,所以尝试开始从封装Form表单组件开始 一:组件需求分析 本次封装组件,主要是摸索封装组件的流程,…...
企业架构LNMP学习笔记32
企业架构LB-服务器的负载均衡之LVS实现: 学习目标和内容 1)能够了解LVS的工作方式; 2)能够安装和配置LVS负载均衡; 3)能够了解LVS-NAT的配置方式; 4)能够了解LVS-DR的配置方式&…...
基于Jetty9的Geoserver配置https证书
1.环境准备 由于Geoserver自带的jetty版本不具备https模块,所以需要下载完整版本jetty。这里需要先查看本地geoserver对应的jetty版本,进入geoserver安装目录,执行如下命令。 java -jar start.jar --version Jetty Server Classpath: -----…...
企业互联网暴露面未知资产梳理
一、互联网暴露面梳理的重要性 当前,互联网新技术的产生推动着各种网络应用的蓬勃发展,网络安全威胁逐渐蔓延到各种新兴场景中,揭示着网络安全威胁不断加速泛化。当前网络存在着许多资产,这些资产关系到企业内部的安全情况&#…...
【动态规划刷题 12】等差数列划分 最长湍流子数组
139. 单词拆分 链接: 139. 单词拆分 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。 示例 1: 输入: …...
react-redux 的使用
react-redux React Redux 是 Redux 的官方 React UI 绑定库。它使得你的 React 组件能够从 Redux store 中读取到数据,并且你可以通过dispatch actions去更新 store 中的 state 安装 npm install --save react-reduxProvider React Redux 包含一个 <Provider…...
77 # koa 中间件的应用
调用 next() 表示执行下一个中间件 const Koa require("koa");const app new Koa();app.use(async (ctx, next) > {console.log(1);next();console.log(2); });app.use(async (ctx, next) > {console.log(3);next();console.log(4); });app.use(async (ctx,…...
【css】z-index与层叠上下文
z-index属性用来设置元素的堆叠顺序,使用z-index有一个大的前提:z-index所作用元素的样式列表中必须有position属性并且属性值为absolute、relative或fixed中的一个,否则z-index无效。 层叠上下文 MDN讲解 我们给元素设置的z-index都是有一…...
系统架构设计师(第二版)学习笔记----多媒体技术
【原文链接】系统架构设计师(第二版)学习笔记----多媒体技术 文章目录 一、多媒体概述1.1 媒体的分类1.2 多媒体的特征1.3 多媒体系统的基本组成 二、多媒体系统的关键技术2.1 多媒体系统的关键技术2.2 视频技术的内容2.3 音频技术的内容2.4 数据压缩算法…...
【面试经典150 | 数组】合并两个有序数组
文章目录 写在前面Tag题目来源题目解读解题思路方法一:合并排序方法二:双指针方法三:原地操作-从前往后方法四:原地操作-从后往前 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章…...
系统架构设计专业技能 ·操作系统
现在的一切都是为将来的梦想编织翅膀,让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dream fly in reality. 点击进入系列文章目录 系统架构设计高级技能 操作系统 一、操作系统概述二、进程管理2.1 进程概念2.2 进…...
CSP 202209-1 如此编码
答题 题目就是字多 #include<iostream>using namespace std;int main() {int n,m;cin>>n>>m;int a[n],c[n1];c[0]1;for(int i0;i<n;i){cin>>a[i];c[i1]c[i]*a[i];}for(int i0;i<n;i){cout<<(m%c[i1]-m%c[i])/c[i]<< ;} }...
windows安装向量数据库milvus
本文介绍windows下安装milvus的方法。 一.Docker安装 1.1docker下载 首先到Docker官网上下载docker:Docker中文网 官网 1.2.安装前前期准备 先使用管理员权限打开windows powershell 然后在powershell里面输入下面那命令,启用“适用于 Linux 的 Windows 子系统”…...
Qt中,QScript对JavaScript的内置接口支持情况
支持 JSON.parse()/stringify() Object.keys() 不支持 console.info()/debug()/warn()/error() window setTimeout() clearTimeout() setInterval() clearInterval() 后续添加更多接口支持情况~...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
Docker、Wsl 打包迁移环境
电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本: 2.2.4.0 内核版本: 5.15.153.1-2 WSLg 版本: 1.0.61 MSRDC 版本: 1.2.5326 Direct3D 版本: 1.611.1-81528511 DXCore 版本: 10.0.2609…...
