【动手学深度学习笔记】--门控循环单元GRU
文章目录
- 门控循环单元GRU
- 1.门控隐状态
- 1.1重置门和更新门
- 1.2候选隐状态
- 1.3隐状态
- 2.从零开始实现
- 2.1读取数据
- 2.2初始化模型参数
- 2.3定义模型
- 2.4训练与预测
- 3.简洁实现
门控循环单元GRU
学习视频:门控循环单元(GRU)【动手学深度学习v2】
官方笔记: 门控循环单元(GRU)
思考一下这种梯度异常在实践中的意义:
- 我们可能会遇到这样的情况:早期观测值对预测所有未来观测值具有非常重要的意义。 考虑一个极端情况,其中第一个观测值包含一个校验和, 目标是在序列的末尾辨别校验和是否正确。 在这种情况下,第一个词元的影响至关重要。 我们希望有某些机制能够在一个记忆元里存储重要的早期信息。 如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。
- 我们可能会遇到这样的情况:一些词元没有相关的观测值。 例如,在对网页内容进行情感分析时, 可能有一些辅助HTML代码与网页传达的情绪无关。 我们希望有一些机制来跳过隐状态表示中的此类词元。
- 我们可能会遇到这样的情况:序列的各个部分之间存在逻辑中断。 例如,书的章节之间可能会有过渡存在, 或者证券的熊市和牛市之间可能会有过渡存在。 在这种情况下,最好有一种方法来重置我们的内部状态表示。
在学术界已经提出了许多方法来解决这类问题。 其中最早的方法是“长短期记忆”(long-short-term memory,LSTM), 门控循环单元(gated recurrent unit,GRU)是一个稍微简化的变体,通常能够提供同等的效果,并且计算的速度明显更快。
1.门控隐状态
门控循环单元与普通的循环神经网络之间的关键区别在于: 前者支持隐状态的门控。 这意味着模型有专门的机制来确定应该何时更新隐状态, 以及应该何时重置隐状态。 这些机制是可学习的,并且能够解决了上面列出的问题。 例如,如果第一个词元非常重要, 模型将学会在第一次观测之后不更新隐状态。 同样,模型也可以学会跳过不相关的临时观测。 最后,模型还将学会在需要的时候重置隐状态。 下面我们将详细讨论各类门控。
1.1重置门和更新门
我们首先介绍重置门(reset gate)和更新门(update gate)。 我们把它们设计成(0,1)区间中的向量, 这样我们就可以进行凸组合。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。
1.2候选隐状态
1.3隐状态
门控循环单元具有以下两个显著特征:
- 重置门有助于捕获序列中的短期依赖关系
- 更新们有助于捕获序列中的长期依赖关系
2.从零开始实现
2.1读取数据
import torch
from torch import nn
from d2l import torch as d2lbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
2.2初始化模型参数
下一步是初始化模型参数。 我们从标准差为0.01的高斯分布中提取权重, 并将偏置项设为0,超参数num_hiddens
定义隐藏单元的数量, 实例化与更新门、重置门、候选隐状态和输出层相关的所有权重和偏置。
def get_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))W_xz, W_hz, b_z = three() # 更新门参数W_xr, W_hr, b_r = three() # 重置门参数W_xh, W_hh, b_h = three() # 候选隐状态参数# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return params
2.3定义模型
现在我们将定义隐状态的初始化函数init_gru_state
,与之前定义的init_rnn_state
函数一样, 此函数返回一个形状为(批量大小,隐藏单元个数)的张量,张量的值全部为零。
def init_gru_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )
现在我们准备定义门控循环单元模型, 模型的架构与基本的循环神经网络单元是相同的, 只是权重更新公式更为复杂。
def gru(inputs, state, params):W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []for X in inputs:Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)H = Z * H + (1 - Z) * H_tildaY = H @ W_hq + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)
2.4训练与预测
训练和预测的工作方式与之前一样
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
3.简洁实现
高级API包含了前文介绍的所有配置细节, 所以我们可以直接实例化门控循环单元模型。 这段代码的运行速度要快得多, 因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
相关文章:
【动手学深度学习笔记】--门控循环单元GRU
文章目录 门控循环单元GRU1.门控隐状态1.1重置门和更新门1.2候选隐状态1.3隐状态 2.从零开始实现2.1读取数据2.2初始化模型参数2.3定义模型2.4训练与预测 3.简洁实现 门控循环单元GRU 学习视频:门控循环单元(GRU)【动手学深度学习v2】 官方…...
浅析linux异步io框架 io_uring
前言 Linux内核5.1支持了新的异步IO框架iouring,由Block IO大神也即Fio作者Jens Axboe开发,意在提供一套公用的网络和磁盘异步IO,不过io_uring目前在磁盘方面要比网络方面更加成熟。 目录 背景简介 io_uring 系统API liburing 高级特性…...
访问者模式的一个使用案例——文档格式转换
访问者模式的一个使用案例——文档格式转换 假设我们在开发一个文档编辑器,它支持多种不同的文档元素(如段落、图片、表格等),现在我们需要添加一个功能——将文档导出为 HTML 或 Markdown 格式。 这就是一个典型的访问者模式的…...
【MySql】数据库的聚合查询
写在最前面的话 哈喽,宝子们,今天给大家带来的是MySql数据库的聚合查询。在前面CRUD章节我们学习了表达式查询,表达式查询是针对列和列之间进行运算的,那么如果想在行和行之间进行运算,那么就需要用到聚合查询。聚合查…...
Linux初探 - 概念上的理解和常见指令的使用
目录 Linux背景 Linux发展史 GNU 应用场景 发行版本 从概念上认识Linux 操作系统的概念 用户的概念 路径与目录 Linux下的文件 时间戳的概念 常规权限 特殊权限 Shell的概念 常用指令 ls tree stat clear pwd echo cd touch mkdir rmdir rm cp mv …...
苹果上架Guideline 4.3 - Design
最近上架苹果商店,审核提示 Guideline 4.3 - DesignWe noticed your app shares a similar binary, metadata, and/or concept as apps previously submitted by a terminated Apple Developer Program account.Submitting similar or repackaged apps is a form o…...
【数据分析入门】【淘宝电商API接入与电商数据分析】初识Web API(一)
今天开始我们将学习如何使用Web应用变成借口(API)自动请求网站到特定信息而不是整个网站,再对这些信息进行可视化。由于这样编写到程序始终使用最新到数据来生成可视化,因此即便数据瞬息万变,它呈现到信息也都是最新的。比如,我们…...
蓝桥杯官网练习题(李白打酒)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 话说大诗人李白,一生好饮。幸好他从不开车。 一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱: …...
聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化
聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化 目录 聚类分析 | MATLAB实现基于SOM自组织特征映射聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于自组织特征映射聚类算法(SOM)的数据聚类可视化 可直接运行 注释清晰 Matlab语言 1.多特征输入&…...
Spring AOP:面向切面编程在实际项目中的应用
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...
python爬虫的反扒技术有哪些如何应对
Python爬虫常见的反扒技术主要有以下几种: IP封禁:有些网站会限制爬虫的IP访问频率,如果访问流量过大,可能会被封禁IP。可以通过使用代理IP或者轮换IP的方式规避此类反扒技术。 用户代理限制:有些网站会通过检测请求头中的用户代…...
网络原理,了解xml, json,protobuffer的特点
目录 外卖服务器场景带入 大佬们通用的规范格式 一、👦 外卖服务器场景 外面服务器沟通有很多模式——展示商家列表等等,只是其中一个,因此需要一个统一的规划了——不同应用程序,里面的自定义格式是不一样的,这样的…...
工具 | XShell的学习与使用
工具 | XShell的学习与使用 时间:2023年9月8日09:03:29 文章目录 工具 | XShell的学习与使用1.下载2.安装 1.下载 1.官网XSHELL - NetSarang Website 2.免费版下载:家庭/学校免费 - NetSarang Website (xshell.com) 3.https://cdn.netsarang.net/de06d10…...
基于微服务+Java+Spring Cloud +UniApp +MySql开发的智慧工地源码(物联网、人工智能、AI识别、危大工程)
智慧工地系统利用物联网、人工智能、云计算、大数据、移动互联网等新一代信息技术,通过工地中台、三维建模服务、视频AI分析服务等技术支撑,实现智慧工地高精度动态仿真,趋势分析、预测、模拟,建设智能化、标准化的智慧工地综合业…...
Kafka安装与使用
Kafka是一种高吞吐量的分布式发布订阅消息系统,因为其高吞吐量、分布式可扩展性等等强大功能使得在目前互联网系统中广泛使用。该篇博客入门了解一下Kafka的安装及使用。 Kafka概念 Kafk是分布式消息队列。Kafka对消息保存时根据Topic进行归类,发送消息…...
php出现SSL certificate problem: unable to get local issuer certificate的解决办法
当在本地使用curl或者一些其它封装好的http类库或组件(如php界 知名的 http客户端 Guzzle)需要访问https时,如果本地没有配置证书,会出现SSL certificate problem: unable to get local issuer certificate的报错信息。 解决办法一…...
Flask狼书笔记 | 07_留言板
文章目录 7 留言板7.1 使用包组织代码7.2 Web开发流程7.3 使用Bootstrap-Flask7.4 Flask-Moment本地化日期和时间7.5 使用Faker生成虚拟数据7.6 Flask_DebugToolbar调试程序7.7 Flask配置的两种组织形式小结 7 留言板 这是一个简单的程序,涉及到的大部分是之前所学…...
文件导入之Validation校验List对象数组
背景: 我们的接口是一个List对象,对象里面的数据基本都有一些基础数据校验的注解,我们怎么样才能校验这些基础规则呢? 我们在导入excel文件进行数据录入的时候,数据录入也有基础的校验规则,这个时候我们又…...
【Linux】文件系统
磁盘及文件系统 文件的增删查改 重新认识目录 目录是文件嘛? 是的。 目录有iNode嘛? 有 目录有内容嘛? 有 任何一个文件,一定在一个目录内部,所以一个目录的内容是什么? 需要数据块,目录的数据…...
1.5 空间中的平面与直线
空间中的平面和直线 知识点1 平面方程 1.平面的法向量与法式 定义1 若向量n 垂直与平面N,则称向量n为平面N的法向量。 设一平面通过一直点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)求垂直于非零向量 n ⃗ \vec{n} n (A,B,C),求改平面N的…...
【深度学习】实验06 使用TensorFlow完成线性回归
文章目录 使用TensorFlow完成线性回归1. 导入TensorFlow库2. 构造数据集3. 定义基本模型4. 训练模型5. 线性回归图 附:系列文章 使用TensorFlow完成线性回归 TensorFlow是由Google开发的一个开源的机器学习框架。它可以让开发者更加轻松地构建和训练深度学习模型&a…...
2023国赛 C题论文 蔬菜类商品自动定价与补货策略
因为一些不可抗力,下面仅展示小部分论文,其余看文末 一、问题重述 在生鲜超市管理领域,涉及一系列复杂问题,包括供应链管理、定价策略以及市场需求分析等方面。以蔬菜类商品为案例,这些商品在生鲜商超中具有较短的保…...
使用 【jacoco】对基于 SpringBoot 和 Dubbo RPC 的项目生成测试覆盖率报告:实践+原理
基于 Dubbo RPC 的项目中有一个提供者项目backend、一个消费者项目gateway、以及注册中心nacos。本篇文章记录在windows本地对该框架的测试过程,以及介绍jacoco的基本原理 测试过程 官网下载安装包解压到本地,https://www.jacoco.org/jacoco/ 只需要用…...
Mac OS合集
MacOS 10.15os 提取码:u12a 如不能点击跳转请复制此链接到浏览器:https://pan.baidu.com/s/1UgPNYprBgJrc25v5ushWxQ?pwdu12a MacOS 11.0 提取码:y77y 如不能点击跳转请复制此链接到浏览器打开:https://pan.baidu.com/s/1srmibmCi2T7UVGvHkCzGKA?pwdy7…...
算法之位运算
前言 位运算在我们的学习中占有很重要的地位,从二进制中数的存储等都需要我们进行位运算 一、位运算复习 1.位运算复习 按位与(&):如果两个相应的二进制位都为1,则该位的结果值才为1,否则为0 按位或( | ):如果…...
flask使用Flask-Mail实现邮件发送
Flask-Mail可以实现邮件的发送,并且可以和 Flask 集成,让我们更方便地实现此功能。 1、安装 使用pip安装: $ pip install Flask-Mail或下载源码安装: $ git clone https://github.com/mattupstate/flask-mail.git $ cd flask-…...
React refers to UMD global, but the current file is a module vite初始化react项目
vite搭建react项目 初始化项目 npm create vite 在执行完上面的命令后,npm 首先会自动下载create-vite这个第三方包,然后执行这个包中的项目初始化逻辑。输入项目名称之后按下回车,此时需要选择构建的前端框架: ✔ Project na…...
vscode 调试 ROS2
1、在下列目录同层级找到.vscode文件夹 . ├── build ├── install ├── log └── src 2、 安装ros插件 3、创建tasks.json文件,添加下列内容 //代替命令行进行编译 {"version": "2.0.0","tasks": [{"label": &…...
TuyaOS开发学习笔记(2)——NB-IoT开发SDK架构、运行流程
一、SDK架构 1.1 架构框图 基于 TuyaOS 系统,可以裁剪得到的适用于 NB-IoT 协议产品接入的 SDK。SDK 将设备配网、上下行数据通信、产测授权、固件 OTA 升级等接口进行封装,并提供相关函数。 1.2 目录结构 1.2.1 TuyaOS目录说明 adapter:T…...
Qt应用开发(基础篇)——普通按钮类 QPushButton QCommandLinkButton
一、前言 QPushButton类继承于QAbstractButton,是一个命令按钮的小部件。 按钮基类 QAbstractButton 按钮或者命令按钮是所有图形界面框架最常见的部件,当按下按钮的时候触发命令、执行某些操作或者回答一个问题,典型的按钮有OK,A…...
谷歌网站开发语言/百度网盘网页版
在学习Python时,很多人会问到__builtin__、__builtins__和builtins之间有什么关系。百度或Google一下,有很 多答案,但是这些答案要么不准确,要么只说了一点点,并不全面。本文将给大家一个较为全面的答案。以下结果是经…...
兼职刷客在哪个网站做/张雷明任河南省委常委
UDP1、将数据及源和目的地址封装成数据包中,不需要建立连接;2、每个数据报的大小限制在64k内;3、因无连接,是不可靠协议;4、不需要建立连接,速度快。 TCP1、建立连接,形成传输数据的通道&#x…...
网站建设单位/上海网站建设制作
1、cd .ssh返回-bash: cd: .ssh:No such file or directory怎么办 出现如下界面 有时候没必要在细节上过于拘泥, 不如直接配置秘钥,反而一切都妥妥的了。 2、如何保存退出? 是Vi的话,可以按Esc键,然后输入命令:(冒号…...
菜单微网站/十大接单推广app平台
一.概述 在使用集合时,往往会将类的对象传入集合中,但当我们需要排序时,原有的.sort无法根据系统的规则来排序,所有这个时候需要我们重写排序规则第一步:需要将传入集合的对象类绑定接口Comparable public class Stu…...
网站建设怎么收费/推广哪个网站好
现象:测试服务是去redis循环取数据,早上发现服务挂了,手动登陆redis 无法输入命令,报错:max number of clients reached Redis 转载于:https://www.cnblogs.com/liuquan/p/9881191.html...
xdebug wordpress/网络公司排名
windows server 2003服务器上邮件服务器的认证问题关于windows server 2003上如何利用自身的组件来配置邮件服务器的方法网上已经有很多,这里不再讨论,我在这里简单说了server03自带邮件服务器的认证问题。假设计算机有2个账户,1个test1,另一…...