深度优先搜索遍历与广度优先搜索遍历
目录
一.深度优先搜索遍历
1.深度优先遍历的方法
2.采用邻接矩阵表示图的深度优先搜索遍历
3.非连通图的遍历
二.广度优先搜索遍历
1.广度优先搜索遍历的方法
2.非连通图的广度遍历
3.广度优先搜索遍历的实现
4.按广度优先非递归遍历连通图
一.深度优先搜索遍历
1.深度优先遍历的方法
从图中一个未访问的顶点V开始,沿着一条路一直走到底,如果到达这条路尽头的节点 ,则回退到上一个节点,再从另一条路开始走到底…,不断递归重复此过程,直到所有的顶点都遍历完成。
以下面无向图为例,2为起点
(1)以2为起点访问1
(2)以1为起点,因为“1”和“2”之间的边已经走过,所以走3
(3) 同理,以3为起点访问5
(4)到5后,没有可访问的点,返回3,3也没有可访问的点,到1后,可访问之前没有访问过的4
(5)4访问6,至此,遍历完所有的点,DFS(深度优先搜索遍历):2->1->3->5->4->6
2.采用邻接矩阵表示图的深度优先搜索遍历
#define MAX_VERTEX_NUM 100typedef struct {// 定义图的相关信息int vexnum; // 顶点数int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵// 其他成员...
} AMSGraph;bool visited[MAX_VERTEX_NUM]; // 记录顶点是否被访问过void DFS(AMSGraph G, int v)
{cout << v;visited[v] = true;for (int w = 0; w < G.vexnum; w++) {if (G.arcs[v][w] == 1 && !visited[w]) {DFS(G, w);}}
}
http://t.csdn.cn/HmcOt
之前的一篇文章已经详细说明了邻接矩阵和邻接表的区别,这里同理
1.用邻接矩阵表示图,遍历图中每一个顶点都要从头扫描该顶点所在行,时间复杂度O(
)
2.用邻接表表示图,虽然有2e个表结点,但只需扫描e个结点即可完成遍历,加上访问n个头结点的时间,时间复杂度为O(n+e)
•稠密图适于在邻接矩阵上进行深度遍历;
•稀疏图适于在邻接表上进行深度遍历。
3.非连通图的遍历
左边的连通分量进行深度优先搜索遍历,再在b,g之中选择一个点进行深度优先搜索遍历
其中一种合理的顶点访问次序为:
a,c,h,d,f,k,e,b,g
二.广度优先搜索遍历
1.广度优先搜索遍历的方法
从某个顶点V出发,访问该顶点的所有邻接点V1,V2..VN,从邻接点V1,V2...VN出发,再访问他们各自的所有邻接点,重复上述步骤,直到所有的顶点都被访问过
以如下图为例,起点为V1
一层一层进行访问,广度优先搜索遍历的结果为:V1->C2->V3->V4->V5->V6->V7->V8
2.非连通图的广度遍历
与连通图类似,在b,g中任意选择一个点开始
合理的顶点访问次序为:a->c->d->e->f->h->k->b->g
3.广度优先搜索遍历的实现
广度优先搜索遍历的实现,与树的层次遍历很像,可以用队列进行实现(出队一个结点,将他的邻接结点入队)
以下动图来自爱编程的西瓜,方便大家理解遍历过程
4.按广度优先非递归遍历连通图
#include <iostream>
using namespace std;const int MAX_SIZE = 100; // 队列的最大容量
const int MAX_VERTICES = 100; // 图的最大顶点数struct Queue {int data[MAX_SIZE];int front; // 队头指针int rear; // 队尾指针
};struct Graph { // 定义图bool edges[MAX_VERTICES][MAX_VERTICES]; // 邻接矩阵int numVertices; // 实际顶点数
};void InitQueue(Queue& Q) {Q.front = 0;Q.rear = -1;
}bool EnQueue(Queue& Q, int x) {if (Q.rear == MAX_SIZE - 1) {// 队列已满,无法插入return false;}Q.data[++Q.rear] = x;return true;
}bool DeQueue(Queue& Q, int& x) {if (Q.front > Q.rear) {// 队列为空,无法出队return false;}x = Q.data[Q.front++];return true;
}bool QueueEmpty(Queue& Q) {return Q.front > Q.rear;
}// 找到顶点u的第一个邻接点并返回
int FirstAdjVex(Graph& G, int u) {for (int v = 0; v < G.numVertices; ++v) {if (G.edges[u][v]) {return v;}}return -1; // 或者返回一个特殊的值表示找不到邻接点
}// 找到图 G 中顶点 u 相对于顶点 w 的下一个邻接点并返回
int NextAdjVex(Graph& G, int u, int w) {for (int v = w + 1; v < G.numVertices; ++v) {if (G.edges[u][v]) {return v;}}return -1; // 或者返回一个特殊的值表示找不到下一个邻接点
}void BFS(Graph G, int v) {cout << v;bool visited[MAX_VERTICES] = { false };visited[v] = true; // 访问第v个顶点Queue Q;InitQueue(Q);EnQueue(Q, v); // v进队while (!QueueEmpty(Q)) {int u;DeQueue(Q, u); // 队头元素出队并置为ufor (int w = FirstAdjVex(G, u); w >= 0; w = NextAdjVex(G, u, w)) {if (!visited[w]) { // w为u的尚未访问的邻接点cout << w;visited[w] = true;EnQueue(Q, w); // w进队(将访问的每一个邻接点入队)}}}
}
广度优先搜索遍历算法的效率
1.如果使用邻接矩阵,则BFS对于每一个被访问到的顶点,都要循环检测矩阵中的整整一行,时间复杂度为O()
2.用邻接表来表示图,虽然有2e个表结点,但只需扫描e个结点即可完成遍历,加上访问n个头结点的实践,时间复杂度为O(n+e)
深度优先搜索遍历(DFS)与广度优先搜索遍历(BFS)算法的效率
1.空间复杂度相同,都是O(n)(借用了堆栈或队列)
2.时间复杂度只与存储结构(邻接矩阵【O()】或邻接表【O(n+e)】)有关,而与搜索路径无关
相关文章:
深度优先搜索遍历与广度优先搜索遍历
目录 一.深度优先搜索遍历 1.深度优先遍历的方法 2.采用邻接矩阵表示图的深度优先搜索遍历 3.非连通图的遍历 二.广度优先搜索遍历 1.广度优先搜索遍历的方法 2.非连通图的广度遍历 3.广度优先搜索遍历的实现 4.按广度优先非递归遍历连通图 一.深度优先搜索遍历 1.深…...
java 中 返回一个空Map
原文链接:Map用法总结 Constructs an empty HashMap with the default initial capacity (16) (mutable) // Constructs an empty HashMap with the default initial capacity (16) and the default load fact // Since:1.2 Map<String, …...
sql 执行插入多条语句中 n个insert 与 一个insert+多个values 性能上有和区别 -- chatGPT
在 SQL 中,你可以使用多种方式来插入多条记录。其中两种常见的方式是: 1. **多个 INSERT 语句**:每个 INSERT 语句都插入一行记录。 sql INSERT INTO table_name (column1, column2, ...) VALUES (value1_1, value1_2, ...); INSERT INTO …...
数学建模国赛C蔬菜类商品的自动定价与补货决策C
数学建模国赛C蔬菜类商品的自动定价与补货决策C 完整思路和代码请私信~~~ 1.拟解决问题 这是一个关于生鲜商超蔬菜商品管理的复杂问题,需要综合考虑销售、补货、定价等多个方面。以下是对这些问题的总结: 问题 1: 蔬菜销售分析 需要分析蔬菜各品类和…...
在程序开发中,接口(interface)的重要性
开了很多人写的程序,都适用了接口,也适用了注入,也没有感到什么不妥。如果只是为了注入而写接口,其实我感觉大可不必,特别是把接口和实体写在一个项目项目中的。 我不知道其他人怎么看接口这一层,接口最大的…...

MyBatis关联关系映射详解
前言 在使用MyBatis进行数据库操作时,关联关系映射是一个非常重要的概念。它允许我们在数据库表之间建立关联,并通过对象之间的关系来进行数据查询和操作。本文将详细介绍MyBatis中的关联关系映射,包括一对一、一对多和多对多关系的处理方法…...

常用电子元器件基础知识
目录 一、电阻 二、电容 三、电感 四、保险丝 五、二极管 一、电阻 概念:顾名思义,就是增加电流通过的阻力的。 就像是在水渠中放入东西,能阻止水的顺利通过也是一个道理。 基于电阻的电气特性,电阻在电路中主要有以下四个…...

git撤销还未push的的提交
怎样撤销掉上图中的提交呢 使用以下代码即可提交 git reset --soft HEAD^...

MySQL--数据库基础
数据库分类 数据库大体可以分为 关系型数据库 和 非关系型数据库 常用数据类型 数值类型: 分为整型和浮点型: 字符串类型 日期类型...

Excel相关笔记
1、找出B列中A列没有的数据并放在C列 公式:IF(ISNA(VLOOKUP(B1,$A 1 : 1: 1:A$4,1,FALSE)),B1,“”)...

RouterOS-配置PPPoEv4v6 Server
1 接口 ether3 出接口 ether4 内网接口 2 出接口 出接口采用PPPoE拨号SLAAC获取前缀,手动配置后缀 2.1 选择出接口interface,配置PPPoE client模式 2.2 配置PPPoE client用户名和密码 2.3 从PPPoE client获取前缀地址池 2.4 给出接口选择前缀并配置…...

PhpStorm软件安装包分享(附安装教程)
目录 一、软件简介 二、软件下载 一、软件简介 PhpStorm是一款由JetBrains开发的专业PHP集成开发环境(IDE),旨在提供全面的PHP开发支持。它是基于IntelliJ IDEA平台构建的,具有强大的功能和工具,可以帮助开发人员提高…...

JavaScript设计模式(三)——单例模式、装饰器模式、适配器模式
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...
LeetCode:有序数组的平方
题目 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变…...

数学分析:势场
首先从散度的物理解释开始。首先,在球内的向量场的散度的积分,等于它在球边界上的流量的积分。所以根据积分中值定理,我们可以这么理解散度,它就是这个体积内的速度场的平均密度。而速度场只和源有关,所以它表示的某个…...
MySQL 中 MyISAM 与 InnoDB 引擎的区别
分析&回答 区别很多,大家说出下面几点,面试就应该 OK 了 1) 事务支持 MyISAM不支持事务,而InnoDB支持。InnoDB的AUTOCOMMIT默认是打开的,即每条SQL语句会默认被封装成一个事务,自动提交,这样会影响速…...

【javascript】禁止浏览器调试前端页面
目录 为啥要禁止?无限 debugger基础禁止调试解决对策 为啥要禁止? 由于前端页面会调用很多接口,有些接口会被别人爬虫分析,破解后获取数据,为了杜绝这种情况,最简单的方法就是禁止人家调试自己的前端代码 …...
Oracle Non-CDB配置 TDE(透明数据加密) 的过程
说明 此文档虽然是针对non CDB而写,但是对于CDB的操作过程也是类似的,即在CDB$ROOT中设置完成wallet设置后,在PDB中设置和打开MEK即可。 先决条件 请确保目录$ORACLE_SID/admin/$ORACLE_SID存在,例如此目录为: /u01/app/oracl…...

MySQL——常见问题
NULL和空值的区别 1、空值不占空间,NULL值占空间。当字段不为NULL时,也可以插入空值。 2、当使用 IS NOT NULL 或者 IS NULL 时,只能查出字段中没有不为NULL的或者为 NULL 的,不能查出空值。 3、判断NULL 用IS NULL 或者 is no…...

在FPGA上快速搭建以太网
在本文中,我们将介绍如何在FPGA上快速搭建以太网 (LWIP )。为此,我们将使用 MicroBlaze 作为主 CPU 运行其应用程序。 LWIP 是使用裸机设计以太网的良好起点,在此基础上我们可以轻松调整软件应用程序以提供更详细的应用…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
FOPLP vs CoWoS
以下是 FOPLP(Fan-out panel-level packaging 扇出型面板级封装)与 CoWoS(Chip on Wafer on Substrate)两种先进封装技术的详细对比分析,涵盖技术原理、性能、成本、应用场景及市场趋势等维度: 一、技术原…...

CMS内容管理系统的设计与实现:多站点模式的实现
在一套内容管理系统中,其实有很多站点,比如企业门户网站,产品手册,知识帮助手册等,因此会需要多个站点,甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...