当前位置: 首页 > news >正文

树的基本概念和存储结构

一、树的基本概念

1、树的定义


树是n(n>=0)个结点的有限集。当n = 0时,称为空树。在任意一棵非空树中应满足:

    1、有且仅有一个特定的称为根的结点。
    2、当n>1时,其余节点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每个集合本身又是一棵树,并且称为根的子树。

    显然,树的定义是递归的,即在树的定义中又用到了自身,树是一种递归的数据结构。树作为一种逻辑结构,同时也是一种分层结构,具有以下特点:

    ①没有父节点的节点称为根节点;
    ②每一个非根节点有且只有一个父节点;
    ③每个子树是不相交的;
    ④n个结点的树中有n-1条边。

结合图来看,可能会更好理解

这就是一棵典型的二叉树

这里,2,3共有子节点5,也就是5有两个父亲,那么上图就不是树了。

这里,CF组成的子树与DGH组成的子树相交,那么上图也不是树了。

2、基本术语

1、祖先、子孙,父亲、孩子、兄弟:

      根节点A到结点K的路径上的任意结点,称为结点K的祖先。如结点B是结点K的祖先,而结点K是结点B的子孙。

       路径上最接近结点K的结点E称为K的父亲,而K为结点E的孩子。根节点A是树中唯一没有父亲的结点。

       有相同双亲的结点称为兄弟,如结点K和结点L有相同的双亲E,即K和L为兄弟。


2、节点的度、树的度

      树中一个结点的孩子个数称为该结点的度,

      树中结点的最大度数称为树的度。

      如结点B的度为2,结点D的度为3,树的度为3。


3、分支结点、叶子结点

      度大于0的结点称为分支结点(又称非终端结点,如BCDEH);

      度为0(没有孩子结点)的结点称为叶子结点(又称终端结点,如KLFGMIJ)。

     
4、结点的深度、高度、层次
     结点的层次从树根开始定义,根结点为第1层,它的子结点为第2层,以此类推。

     双亲在同一层的结点互为堂兄弟,图中结点G与E,F,H,I,J互为堂兄弟。

     结点的深度是从根结点开始自顶向下逐层累加的。

     结点的高度是从叶结点开始自底向上逐层累加的。

     树的高度(或深度)是树中结点的最大层数。图中树的高度为4。

5、有序树、无序树

     树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树

     树中任意节点的子节点之间有顺序关系,这种树称为有序树

6、路径、路径长度。

      树中两个结点之间的路径是由这两个结点之间所经过的结点序列构成的,而路径长度是路径上所经过的的个数。
      注意:由于树中的分支是有向的,即从双亲指向孩子,所以树中的路径是从上向下的,同一双亲的两个孩子之间不存在路径。

7、森林

     森林是m (m≥0)棵互不相交的树的集合。

      森林的概念与树的概念十分相近,因为只要把树的根结点删去就成了森林。反之,只要给m棵独立的树加上一个结点,并把这m棵树作为该结点的子树,则森林就变成了树。

注意:上述概念无须刻意记忆, 根据实例理解即可。

二、树的存储结构

    1、双亲表示法

实现:定义结构数组,存放树的结点,每个结点有两个域,分别是数据域和指针域(双亲域),数据域用于存放结点本身信息,指针域用于存放本结点的双亲结点在数组中的位置。

双亲表示的结点结构

data(数据域)parent(指针域)
存储结点的数据信息存储该结点的双亲所在数组中的下标

双亲表示法示意图:

双亲表示法结构定义:

//结点结构
struct PTNode
{   int data;           //数据域int parent;         //双亲域
}PTNode;//树结构struct
{PTNode nodes[100];    //结点数组int r,n;                  //根结点位置和结点数
}

    双亲表示法的特点

  • 由于根结点是没有双亲的,约定根结点的位置位置域为-1.
  • 根据结点的parent指针很容易找到它的双亲结点。所用时间复杂度为O(1),直到parent为-1时,表示找到了树结点的根。
  • 缺点:如果要找到孩子结点,需要遍历整个结构才行

    2、孩子链表法

    把每个结点的孩子结点排列起来,以单链表作存储结构,则n个结点有n个孩子链表,如果是叶子结点则此单链表为空表,然后n个头指针又组成一个线性表,采用顺序存储结构,存放在一个一维数组中。

孩子表示法有两种结点结构:孩子链表的孩子结点表头数组的表头结点

  • 孩子链表的孩子结点的结点结构:
child(数据域)next(指针域)
存储某个结点在表头数组中的下标存储指向某结点的下一个孩子结点的指针

  • 孩子链表的双亲结点的结点结构:
data(数据域)firstchild(头指针域)
存储某个结点的数据信息存储该结点的孩子链表的头指针

孩子链表的结构示意图:

孩子链表表示法的结构定义:

//孩子结点
typedef struct CTNode
{   int child;struct CTNode *next;
}*ChildPtr; //双亲结点
typedef struct
{   ElemType data;ChildPtr firstchild;
}CTBox;//树结构
typedef struct
{   CTBox nodes[100];int r, n;              //根的位置和结点数
}CTree;

    特点:找孩子容易,找双亲困难。

    对于孩子表示法,查找某个结点的某个孩子,或者找某个结点的兄弟,只需要查找这个结点的孩子单链表即可。但是当要寻找某个结点的双亲时,就不是那么方便了。所以可以将双亲表示法和孩子表示法结合,形成双亲孩子表示法

树的双亲孩子链表的结构示意图:

树的双亲孩子表示法结构定义:

typedef struct CTNode{  // 孩子结点int child;  // 孩子结点的下标struct CTNode * next;  // 指向下一结点的指针
}*ChildPtr;typedef struct {  // 表头结构int data;  // 存放在数中的结点数据int parent;      // 存放双亲的下标ChildPtr firstchild;  // 指向第一个孩子的指针
}CTBox;typedef struct {  // 树结构CTBox nodes[100]; // 结点数组int r;  // 根的位置int n;  // 结点树
}CTree;


3、孩子兄弟表示法

    任意一棵树,它的结点的第一个孩子如果存在就是唯一的,它的右兄弟存在也是唯一的。因此,设置两个指针,分别指向该结点的第一个孩子和此结点的右兄弟。

孩子兄弟表示法的结点结构:

data(数据域)firstchild(指针域)rightsib(指针域)
存储结点的数据信息存储该结点的第一个孩子的存储地址存储该结点的右兄弟结点的存储地址

孩子兄弟表示法结构示意图:

孩子兄弟结点的结构定义:

/* 树的孩子兄弟表示法结构定义*/
typedef struct CSNode{int data;struct CSNode * firstchild;struct CSNode * rightsib;}CSNode, *CSTree;

相关文章:

树的基本概念和存储结构

一、树的基本概念 1、树的定义 树是n(n>0)个结点的有限集。当n 0时,称为空树。在任意一棵非空树中应满足: 1、有且仅有一个特定的称为根的结点。 2、当n>1时,其余节点可分为m(m>0&#xff09…...

深圳企业制作宣传片群体定位的重要性

相信众多企业都拍了自己公司的宣传片,尤其是在互联网高度发达的今天,宣传片可以说成为了我们企业对外宣传最主要的方式。看着企业多样式的宣传片种类,我们该如何评价一部宣传片的好坏呢?要知道宣传片的好坏是一个相对主观的问题&a…...

2309亚当arsd的11.1版本

原文 arsd11.1 Minigui 调整主题 在11.0中略有修改Minigui的主题,但它落后于11.1的计划.这是个重大更改,但这些更改很小. 新主题稍微变浅了默认组件的背景色和默认字体,这两者都主要影响Linux,因为窗口上的大多数组件一般使用本地主题. 更改状态栏 现有的状态栏类允许添加…...

spring---第七篇

系列文章目录 文章目录 系列文章目录一、什么是bean的自动装配,有哪些方式?一、什么是bean的自动装配,有哪些方式? 开启自动装配,只需要在xml配置文件中定义“autowire”属性。 <bean id="cutomer" class="com.xxx.xxx.Customer" autowire="…...

编程要搞明白的东西(二)

文章目录 一、简介二、面向对象编程基础2.1 面向对象编程概述2.2 类和对象2.2.1 类的定义和特点2.2.2 对象的创建和使用 2.3 封装、继承与多态的关系2.3.1 封装的概念和优势2.3.2 继承的概念和作用2.3.3 多态的概念和实现方式 三、封装3.1 封装的定义和原则3.2 封装的实现方法3…...

检索与毒害 —— 对抗人工智能供应链攻击

作者&#xff1a;DAVE ERICKSON 在这篇文章中&#xff0c;了解人工智能大语言模型的供应链漏洞&#xff0c;以及如何利用搜索引擎的人工智能检索技术来对抗人工智能的错误信息和故意篡改。 虽然对于人工智能研究人员来说可能是新鲜事&#xff0c;但供应链攻击对于网络安全世界…...

Linux 禁止用户或 IP通过 SSH 登录

Linux 禁止用户或 IP通过 SSH 登录 限制用户 SSH 登录 1.只允许指定用户进行登录(白名单): 在 /etc/ssh/sshd_config 配置文件中设置 AllowUsers 选项,(配置完成需要重启 SSHD 服务)格式如下: AllowUsers aliyun test@192.168.1.1 # 允许 aliyun 和从 19…...

14.Redis 主从复制

Redis 主从复制 redis 主从复制配置 redis 主从复制启动 redis 主从复制断开 redis 主从复制主从复制构特点主从复制的拓扑结构一主一从⼀主多从树状主从 主从复制原理数据同步psync 运行流程全量复制流程部分复制流程实时复制 关于从节点何时晋升成主节点总结 redis 主从复制 …...

常见的图像格式介绍:RAW、RGB、YUV

常见的图像格式有RAW、RGB、YUV这三大类 1. RAW raw图像指的是sensor输出的原始数据&#xff0c;常见的有8位、10位、12位之分&#xff0c;分别表示一个像素点所占的字节数为8bit、10bit、12bit。 raw数据常见的有四种Bayer模式&#xff1a;GRBG、RGGB、BGGR&#xff08;下图…...

极简极速-Bitset (bitmap)实现考勤打卡场景

文章目录 1. redis命令行操作bitmap2. RedisTemplate操作bitmap3. Java中的Bitset 1. redis命令行操作bitmap 2. RedisTemplate操作bitmap bitmap的常见业务场景主要有日活统计&#xff08;类似的月考勤&#xff09;、点赞、BloomFilter等&#xff0c;以用户mj考勤统计为例&am…...

word如何插入图片?3种常用的方法

word作为一款常用的办公软件&#xff0c;不仅可以处理文本内容&#xff0c;还能够轻松地插入图片以丰富文档内容。插入图片可以使文档更具吸引力、可读性和信息传达能力。本文将为您介绍word如何插入图片的3种方法&#xff0c;帮助您在文档中灵活、高效地添加图像元素。 word插…...

Python/C API - 模組,型別,Tuple,例外和引用計數

Python/C API - 模組&#xff0c;型別&#xff0c;Tuple&#xff0c;例外和引用計數 前言Python/C API - Common Object StructuresPyObjectPyMethodDefPyGetSetDef Python/C API - Module ObjectsPyModuleDefPyModule_CreatePyModule_AddObjectPyModule_AddObjectRef Initiali…...

人工智能轨道交通行业周刊-第59期(2023.9.4-9.10)

本期关键词&#xff1a;无锡智慧地铁、无人车站、钢轨打磨、混元大模型、开源大模型 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMetro轨道世界…...

ASP.NET Core 中的 MVC架构

MVC 架构 MVC架构把 App 按照逻辑分成三层&#xff1a; Controllers&#xff0c;接收 http request&#xff0c;配合 model&#xff0c;通过http response 返回 view&#xff0c;尽量不做别的事Models, 负责业务逻辑&#xff0c;App 的状态&#xff0c;以及数据处理Views&…...

C# PSO 粒子群优化算法 遗传算法 随机算法 求解复杂方程的最大、最小值

复杂方程可以自己定义&#xff0c;以下是看别人的题目&#xff0c;然后自己来做 以下是计算结果 private void GetMinResult(out double resultX1, out double min){double x1, result;Random random1 new Random(DateTime.Now.Millisecond* DateTime.Now.Second);min 99999…...

网络协议从入门到底层原理学习(三)—— 路由

网络协议从入门到底层原理学习&#xff08;三&#xff09;—— 路由 1、简介 路由&#xff08;routing&#xff09;是指分组从源到目的地时&#xff0c;决定端到端路径的网络范围的进程 在不同网段之间转发数据&#xff0c;需要有路由器的支持 默认情况下&#xff0c;路由器…...

2023/9/6 -- C++/QT

一、输出流对象cout 1> 该对象是来自于ostream的类对象&#xff0c;功能上类似于printf函数 2> 该类对象本质上调用成员函数插入运算符重载函数 3> 输出数据时&#xff0c;无需使用格式控制符&#xff1a;%d、%c、%s。。。&#xff0c;直接输出即可 4> 换行使用…...

python爬虫,多线程与生产者消费者模式

使用队列完成生产者消费者模式使用类创建多线程提高爬虫速度 https://sc.chinaz.com/tupian/index.html https://sc.chinaz.com/tupian/index_2.html https://sc.chinaz.com/tupian/index_3.html from threading import Thread from queue import Queue import requests from b…...

WordPress 提示“此站点遇到了致命错误”的解决方法

WordPress 提示“此站点遇到了致命错误”的解决方法 WordPress 网站博客提示“此站点遇到了致命错误。”如何解决&#xff1f;今天老唐不幸遇到了这个问题&#xff0c;搜了一下解决方法&#xff0c;发现致命错误原因有很多&#xff0c;所以需要先打开 WordPress 的 WP_DEBUG 功…...

Vue3,Typescript中引用组件路径无法找到模块报错

是这么个事&#xff0c;我在vue3新创建的项目里&#xff0c;写了个组件叫headerIndex.vue&#xff0c;放到app.vue中import就会报错 路径肯定没写错&#xff0c;找到了解决方法&#xff0c;但是也没想明白为什么 解决方法如下 在vite-env.d.ts文件中加入 declare module &qu…...

科技成果鉴定之鉴定测试报告

鉴定测试 由于软件类科技成果的复杂、内部结构难以鉴别等特点&#xff0c;我们提供了软件类科技成果鉴定测试服务。软件类科技成果鉴定测试是依据其科研项目计划任务书或技术合同书&#xff0c;参照相应的国家标准对要申请鉴定的软件类科技成果进行的一种符合性测试&#xff0…...

NFTScan 浏览器正式版上线 2 周年!

NFTScan 成立于 2021 年 4 月份&#xff0c;总部位于香港。在 2021 年的 7 月份&#xff0c;NFTScan 团队对外发布了 NFTScan 浏览器公测版&#xff0c;并在同年的 9 月 4 号&#xff0c;对外发布了 NFTScan 浏览器正式版&#xff0c;同步启用了全球品牌域名&#xff1a;NFTSCA…...

为什么要使用Token

传统的session认证 我们知道&#xff0c;http协议是一种无状态的协议&#xff0c;这就意味着当用户向我们的应用提供了用户名和密码进行用户认证&#xff0c;那么在下一次登录的时候&#xff0c;用户还要再进行验证&#xff0c;因为根据http协议&#xff0c;浏览器并不知道是谁…...

前端面试的话术集锦第 8 篇:高频考点(JS性能优化 性能优化琐碎事)

这是记录前端面试的话术集锦第八篇博文——高频考点(JS性能优化 & 性能优化琐碎事),我会不断更新该博文。❗❗❗ 1. 从V8中看JS性能优化 注意:该知识点属于性能优化领域。 1.1 测试性能⼯具 Chrome已经提供了⼀个⼤⽽全的性能测试⼯具Audits。 点我们点击Audits后,可…...

【数据分析】Python:处理缺失值的常见方法

在数据分析和机器学习中&#xff0c;缺失值是一种常见的现象。在实际数据集中&#xff0c;某些变量的某些条目可能没有可用的值。处理缺失值是一个重要的数据预处理步骤。在本文中&#xff0c;我们将介绍如何在 Pandas 中处理缺失值。 我们将探讨以下内容&#xff1a; 什么是缺…...

“批量随机字母命名文件,轻松管理你的文件库“

你是否曾经遇到过文件命名混乱&#xff0c;难以管理的问题&#xff1f;为了解决这个问题&#xff0c;我们推出了一款全新的文件改名工具&#xff0c;它可以帮助你批量给文件名添加一个随机字母&#xff0c;让你的文件库更加有序、易于管理。 首先第一步&#xff0c;我们要进入…...

elasticsearch的数据聚合

聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如&#xff1a; 什么品牌的手机最受欢迎&#xff1f; 这些手机的平均价格、最高价格、最低价格&#xff1f; 这些手机每月的销售情况如何&#xff1f; 实现这些统计功能的比数据库的sql要方便的多&#xff0c;而且…...

【网络编程·数据链路层】MAC帧/以太网协议/ARP协议/RARP协议

需要云服务器等云产品来学习Linux的同学可以移步/-->腾讯云<--/-->阿里云<--/-->华为云<--/官网&#xff0c;轻量型云服务器低至112元/年&#xff0c;新用户首次下单享超低折扣。 目录 一、MAC帧 1、IP地址和MAC地址的区别 2、MAC帧协议 3、MTU对IP协议的…...

算法:移除数组中的val的所有元素---双指针[2]

文章来源&#xff1a; https://blog.csdn.net/weixin_45630258/article/details/132689237 欢迎各位大佬指点、三连 1、题目&#xff1a; 给你一个数组 nums和一个值 val&#xff0c;你需要原地移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用…...

Python小知识 - Python爬虫进阶:如何克服反爬虫技术

Python爬虫进阶&#xff1a;如何克服反爬虫技术 爬虫是一种按照一定的规则&#xff0c;自动抓取网页信息的程序。爬虫也叫网页蜘蛛、蚂蚁、小水滴&#xff0c;是一种基于特定算法的自动化程序&#xff0c;能够按照一定的规则自动的抓取网页中的信息。爬虫程序的主要作用就是从一…...

晋城推广型网站建设/龙岗网站制作

通过前期的调研&#xff0c;移情客户&#xff0c;在定义这个阶段我们要给出一个问题的描述&#xff0c;为大家下一步模型做好准备。 为什么我们要有定义的这个过程呢&#xff1f;简单的说我们不太可能为每个人都去设计一个产品&#xff0c;也不可能找到一个银弹一下子解决所有的…...

网站建设记在哪个科目/电商网站网址

前端验证与后端验证 前端验证一般指通过&#xff2a;&#xff33;方式实现的&#xff0c;友好的&#xff0c;而后端验证是指从表单提交过来&#xff0c;要进行入库之前的&#xff0c;数据有效性的验证&#xff0c;它不需要有美丽的外表&#xff0c;它需要有的仅仅是“有效”。 …...

武汉网站建设武汉/百度搜索下载app

下面是小凰凰的简介&#xff0c;看下吧&#xff01; &#x1f497;人生态度&#xff1a;珍惜时间&#xff0c;渴望学习&#xff0c;热爱音乐&#xff0c;把握命运&#xff0c;享受生活 &#x1f497;学习技能&#xff1a;网络 -> 云计算运维 -> python全栈( 当前正在学习…...

天猫秘券网站怎么做/常见的网络营销工具有哪些

本文分享产品经理入门到进阶7套课&#xff0c;带大家开始产品经理学习。理论知识和学习路线参考上图&#xff0c;另外文末有晋升思维导图哦! 一、快速了解产品经理行业 这个阶段对于不了解产品经理这个岗位&#xff0c;没有接触过相关工作的同学来说&#xff0c;重点在于了解…...

免费域名申请网站大全下载/重庆排名优化整站优化

前言一 编程规约 一 命名风格二 常量定义三 代码格式四 OOP规约五 集合处理六 并发处理七 控制语句八 注释规约九 其它 二 异常日志 一 异常处理二 日志规约 三 MySQL数据库 一 建表规约二 索引规约三 SQL语句四 ORM映射 四 工程结构 一 应用分层二 二方库依赖三 服务器 五 安全…...

wordpress新闻动态插件/如何做好网络营销?

首先我需要这样一个界面 这个界面是在使用AudioManager.adjustStreamVolume(int streamType, int direction, int flags)显示出来的&#xff0c;记住flags这里传 AudioManager.FLAG_SHOW_UI才会显示 不然只是逻辑上调整了某个流的声音&#xff0c;用户他看不到界面不知道成功与…...