python28种极坐标绘图函数总结
文章目录
- 基础图
- 误差线
- 等高线polar
- 场图polar
- 统计图
- 非结构坐标图
📊python35种绘图函数总结,3D、统计、流场,实用性拉满
matplotlib中的画图函数,大部分情况下只要声明坐标映射是polar,就都可以画出对应的极坐标图。但极坐标和直角坐标的坐标区间不同,所以有些数据和函数关系适合在直角坐标系中展示,而有些则适合在及坐标中展示。
基础图
函数 | 坐标参数 | 图形类别 | |
---|---|---|---|
plot | x,y | 曲线图 | |
stackplot | x,y | 散点图 | |
stem | x,y | 茎叶图 | |
scatter | x,y | 散点图 | |
polar | x,y | 极坐标图 | |
step | x,y | 步阶图 | |
bar | x,y | 条形图 | |
barh | x,y | 横向条形图 |
bar和barh的对偶关系稍微有些抽象,可以理解为前者是以角度方向为x轴;而barh则是以半径方向为x轴。
代码如下
import matplotlib.pyplot as plt
import numpy as npx = np.arange(20)/2
y = xfDct = {"plot" : plt.plot, "stackplot": plt.stackplot,"stem" : plt.stem, "scatter" : plt.scatter, "polar": plt.polar, "step" : plt.step, "bar" : plt.bar, "barh" : plt.barh, }fig = plt.figure(figsize=(14,6))
for i,key in enumerate(fDct, 1):ax = fig.add_subplot(2,4,i, projection="polar")fDct[key](x, y)plt.title(key)plt.tight_layout()
plt.show()
误差线
函数 | 坐标 | 图形类别 |
---|---|---|
errorbar | x,y,xerr,yerr | 误差线 |
fill_between | x,y1,y2 | 纵向区间图 |
fill_betweenx | y, x1, x2 | 横向区间图 |
代码如下
x = np.arange(20)/2
y = x
y1, y2 = 0.9*y, 1.1*y
x1, x2 = 0.9*x, 1.1*x
xerr = np.abs([x1, x2])/10
yerr = np.abs([y1, y2])/10fig = plt.figure(figsize=(12,4))ax = fig.add_subplot(141, projection='polar')
ax.errorbar(x, y, yerr=yerr)
plt.title("errorbar with yerr")ax = fig.add_subplot(142, projection='polar')
ax.errorbar(x, y, xerr=xerr)
plt.title("errorbar with xerr")ax = fig.add_subplot(143, projection='polar')
ax.fill_between(x, y1, y2)
plt.title("fill_between")ax = fig.add_subplot(144, projection='polar')
ax.fill_betweenx(y, x1, x2)
plt.title("fill_betweenx")plt.tight_layout()
plt.show()
等高线polar
绘图函数 | 坐标 | 说明 |
---|---|---|
contour | [x,y,]z | 等高线 |
contourf | [x,y,]z | 填充等高线 |
pcolormesh | [x,y,]z | 伪彩图 |
由于imshow默认其绘图坐标是标准的1x1网格,而在极坐标种,这种网格的尺寸会随着r的增大而增大,从而变得极其不实用,所以下面对极坐标图的演示,就不包含imshow了。
代码如下
X, Y = np.indices([100,100])
X = X/100*np.pi*2
Y = Y/25 - 2
Z = (1 - np.sin(X) + np.cos(X)**5 + Y**3) * np.exp(-Y**2)fDct = {"contour": plt.contour, "contourf":plt.contourf, "pcolormesh" : plt.pcolormesh}fig = plt.figure(figsize=(9,3))
for i,key in enumerate(fDct, 1):ax = fig.add_subplot(1,3,i, projection='polar')fDct[key](X,Y,Z)plt.title(key)plt.tight_layout()
plt.show()
场图polar
绘图函数 | 坐标 | 说明 |
---|---|---|
quiver | x,y,u,v | 向量场图 |
streamplot | x,y,u,v | 流场图 |
barbs | x,y,u,v | 风场图 |
代码如下
Y, X = np.indices([10,10])
X = X/10*np.pi*2.5
Y = Y#Y, X = np.indices([6,6])/0.75 - 4
U = 6*np.sin(X) + Y
V = Y - 6*np.sin(X)dct = {"quiver":plt.quiver, "streamplot":plt.streamplot, "barbs" :plt.barbs}fig = plt.figure(figsize=(12,4))for i,key in enumerate(dct, 1):ax = fig.add_subplot(1,3,i,projection='polar')dct[key](X,Y,U,V)plt.title(key)plt.tight_layout()
plt.show()
统计图
绘图函数 | 坐标 | 说明 |
---|---|---|
hist | x | 数据直方图 |
boxplot | x | 箱线图 |
violinplot | x | 小提琴图 |
enventplot | x | 平行线疏密图 |
hist2d | x,y | 二维直方图 |
hexbin | x,y | 钻石图 |
pie | x | 饼图 |
极坐标在绘制直方图的时候,需要注意其横坐标是以 2 π 2\pi 2π为周期的,也就是说随机变量的最大值和最小值不得相差 2 π 2\pi 2π,否则会导致重叠。
由于极坐标绘图本质上是一种坐标映射,所以并不会把0和360°真正地等同起来,所以在hist2d中,整个图像并没有闭合。而最有意思的是饼图,直接给压扁了,让人很难一下子看出不同组分的比例关系。
代码如下
x = np.random.standard_normal(size=1000)dct = {"hist" : plt.hist, "violinplot" : plt.violinplot,"boxplot": plt.boxplot}fig = plt.figure(figsize=(10,6))
for i,key in enumerate(dct, 1):ax = fig.add_subplot(2,3,i, projection='polar')dct[key](x)plt.title(key)ax = fig.add_subplot(234, projection='polar')
ax.eventplot(x)
plt.title("eventplot")x = np.random.randn(5000)
y = 1.2 * x + np.random.randn(5000) / 3
ax = fig.add_subplot(235, projection='polar')
ax.hist2d(x, y, bins=[np.arange(-3,3,0.1)] * 2)
plt.title("hist2d")ax = fig.add_subplot(236, projection='polar')
ax.pie([1,2,3,4,5])
plt.title("pie")plt.tight_layout()
plt.show()
非结构坐标图
绘图函数 | 坐标 | 说明 |
---|---|---|
tricontour | x,y,z | 非结构等高线 |
tricontourf | x,y,z | 非结构化填充等高线 |
tricolor | x,y,z | 非结构化伪彩图 |
triplot | x,y | 三角连线图 |
代码如下
x = np.random.uniform(0, np.pi*2, 256)
y = np.random.uniform(-2, 2, 256)
z = (1 - np.sin(x) + np.cos(x)**5 + y**3) * np.exp(-y**2)levels = np.linspace(z.min(), z.max(), 7)fig = plt.figure(figsize=(12,4))ax = fig.add_subplot(141, projection='polar')
ax.plot(x, y, 'o', markersize=1, color='lightgrey', alpha=0.5)
ax.tricontour(x, y, z, levels=levels)
plt.title("tricontour")ax = fig.add_subplot(142, projection='polar')
ax.plot(x, y, 'o', markersize=1, color='lightgrey', alpha=0.5)
ax.tricontourf(x, y, z, levels=levels)
plt.title("tricontourf")ax = fig.add_subplot(143, projection='polar')
ax.plot(x, y, 'o', markersize=1, color='lightgrey', alpha=0.5)
ax.tripcolor(x, y, z)
plt.title("tripcolor")ax = fig.add_subplot(144, projection='polar')
ax.triplot(x,y)
plt.title("triplot")plt.tight_layout()
plt.show()
相关文章:

python28种极坐标绘图函数总结
文章目录 基础图误差线等高线polar场图polar统计图非结构坐标图 📊python35种绘图函数总结,3D、统计、流场,实用性拉满 matplotlib中的画图函数,大部分情况下只要声明坐标映射是polar,就都可以画出对应的极坐标图。但…...

C#编程基础(万字详解,这一篇就够了)
C#及其开发环境简介 C#概述 C#的编程功能 C#与.Net的关系 .Net C# C#的集成开发环境 Windows上编写C#程序 Linux/Mac OS上编写C#程序 运行第一个HelloWorld程序 C#基本语法 程序实例 C#基本语法 using关键字 class关键字 注释 成员变量 成员函数 实例化一个类…...
SpringBoot中自定义注解
目录 SpringBoot中自定义注解 关于注解的解释 元注解 Documented Target Retention Inherited Native 自定义注解 自定义注解与SpringBoot全局异常处理完成参数校验 约束验证器 自定义全局异常处理器 自定义注解完成数据脱敏 定义脱敏策略枚举 自定义注解 实行脱…...

《TCP/IP网络编程》阅读笔记--地址族和数据序列
目录 1--IP地址和端口号 2--地址信息的表示 3--网络字节序与地址变换 4--网络地址的初始化与分配 5--Windows部分代码案例 1--IP地址和端口号 IP 地址分为两类: ① IPv4 表示 4 字节地址族; ② IPv6 表示 16 字节地址族; IPv4 标准的 4 …...

【C++】可变参数模板
2023年9月9日,周六下午 这个还是挺难学的,我学了好几天... 在这里我会举大量的示例程序,这样可以有一个更好的理解, 不定期更新。 目录 推荐文章: 示例程序一:拼接字符串 示例程序二:求整…...

WPF Flyout风格动画消息弹出消息提示框
WPF Flyout风格动画消息弹出消息提示框 效果如图: XAML: <Window x:Class"你的名称控件.FlyoutNotication"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xam…...
Spring Boot 集成 Redis
Spring-data-redis 在 Spring 中整合 Redis jedis : 采用的直连,多个线程操作的话,是不安全的,如果想要避免不安全的,使用 jedis pool 连接池 lettuce : 采用netty,实例可以再多个线程中进行共享,不存在…...

Java线程之间通信方式
目录 1 线程之间的通信方式主要有以下几种2 共享变量3 锁机制4 条件变量5 信号量6 管道 1 线程之间的通信方式主要有以下几种 在实际开发时,一个进程中往往有很多个线程,大多数线程之间往往不是绝对独立的,比如说我们需要将A和B 两个线程的执…...

【LeetCode-中等题】367. 有效的完全平方数
文章目录 题目方法一:二分查找 题目 方法一:二分查找 找 1 - num 之间的 mid, 开方是整数 就找得到 mid, 不是整数自然找不到mid class Solution { // 二分查找 ;找 1 - num 之间的mid 开方是整数 就找得到 不是…...

英语单词(二)
1.int:整形 2.char:字符型 3.scanner:接受输入,扫描器 4.integer:整数,整形 5.type:类型 6.string:字符串类型 7.double:双精度浮点型...
Django 用相对路径方式引用自定义模块 或 文件
Django的文件夹结构 projectName/websiteName/appName manage.py 所在路径为:D:/projectA/website1/manage.py views.py 所在路径为:D:/projectA/website1/app1/views.py D:/projectA/website1/app1/module1.py 如果要引用自定义模块,引用…...

企业架构LNMP学习笔记22
防盗链原理和实现。 域名A的资源文件,经常被域名B直接调用访问。 而用户经常访问域名B,看到的资源(图片等)以为是域名B的,实际则是域名A的。 但是域名A没有获得任何收益,却要给域名B来源的访问消耗服务器…...
uniapp和小程序设置tabBar和显示与隐藏tabBar
(1)设置tabBar: uni.setTabberItem({ }); wx.setTabberItem({ }); 属性值: indexnumber是tabBar 的哪一项,从左边算起,索引从0开始textstring否tab 上按钮文字iconPathstring否图片路径selectedIc…...
物联网、无线通讯
LAN:局域网 Local Area Network WAN:广域网 Wide Area Network WLAN:无线局域网 Wireless LAN LPWAN:低功耗广域网 Low Power Wide Area Network技术特点无线通信技术应用场景高功耗、高速率的远距离传输3G、4G蜂窝这类传输技术适…...

Pod和容器设计模式
为什么需要Pod 一些应用的实现是需要多个进程配合完成的,由于容器实际上是一个“单进程”模型,如果在容器里启动多个进程会存在进程管理的难题。在Kubernetes里面,实际上会被定义为一个拥有四个容器的Pod。 Pod相当于进程组 Kubernetes 是…...

docker系列(3) - 常用软件安装
文章目录 3. docker安装常用软件3.1 安装nginx3.2 安装redis3.3 安装mysql3.4 部署springboot程序3.4.1 编写dockerfile3.4.2 构建镜像3.4.3 启动镜像 3. docker安装常用软件 3.1 安装nginx docker pull nginx#挂载启动 docker run -it -d \ --namenginx \ --networkpub_netw…...

Apache Hive之数据查询
文章目录 版权声明数据查询环境准备基本查询准备数据select基础查询分组、聚合JOINRLIKE正则匹配UNION联合Sampling采用Virtual Columns虚拟列 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明,所有版权属于黑马程序员或相关权利…...
OpenCV---视频操作
用摄像头捕获视频 import cv2 as cv import numpy cap cv.VideoCapture(0) while(cap.isOpened()):ret, frame cap.read() # read() 它返回两个值,第一个是布尔值,表示是否成功读取到一帧,第二个是帧本身。cv.imshow(Video, frame)if c…...

《TCP/IP网络编程》阅读笔记--进程间通信
目录 1--进程间通信 2--pipe()函数 3--代码实例 3-1--pipe1.c 3-2--pipe2.c 3-3--pipe3.c 3-4--保存信息的回声服务器端 1--进程间通信 为了实现进程间通信,使得两个不同的进程间可以交换数据,操作系统必须提供两个进程可以同时访问的内存空间&am…...
mysql中show status参数介绍
Uptime_since_flush_status, 2159061:自上次刷新状态以来的服务器运行时间(以秒为单位)。Uptime, 2159061:服务器的总运行时间(以秒为单位)。Threads_running, 2:当前正在运行的客户端线程数。T…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...