YOLOv5改进算法之添加CA注意力机制模块
目录
1.CA注意力机制
2.YOLOv5添加注意力机制
送书活动
1.CA注意力机制
CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地理解不同位置之间的关系。如下图:
1. 输入特征: CA 注意力机制的输入通常是一个特征图,它通常是卷积神经网络(CNN)中的某一层的输出,具有以下形状:[C, H, W]
,其中:
C
是通道数,表示特征图中的不同特征通道。H
是高度,表示特征图的垂直维度。W
是宽度,表示特征图的水平维度。
2. 全局平均池化: CA 注意力机制首先对输入特征图进行两次全局平均池化,一次在宽度方向上,一次在高度方向上。这两次操作分别得到两个特征映射:
- 在宽度方向上的平均池化得到特征映射
[C, H, 1]
。 - 在高度方向上的平均池化得到特征映射
[C, 1, W]
。
这两个特征映射分别捕捉了在宽度和高度方向上的全局特征。
3. 合并宽高特征: 将上述两个特征映射合并,通常通过简单的堆叠操作,得到一个新的特征层,形状为 [C, 1, H + W]
,其中 H + W
表示在宽度和高度两个方向上的维度合并在一起。
4. 卷积+标准化+激活函数: 对合并后的特征层进行卷积操作,通常是 1x1 卷积,以捕捉宽度和高度维度之间的关系。然后,通常会应用标准化(如批量标准化)和激活函数(如ReLU)来进一步处理特征,得到一个更加丰富的表示。
5. 再次分开: 分别从上述特征层中分离出宽度和高度方向的特征:
- 一个分支得到特征层
[C, 1, H]
。 - 另一个分支得到特征层
[C, 1, W]
。
6. 转置: 对分开的两个特征层进行转置操作,以恢复宽度和高度的维度,得到两个特征层分别为 [C, H, 1]
和 [C, 1, W]
。
7. 通道调整和 Sigmoid: 对两个分开的特征层分别应用 1x1 卷积,以调整通道数,使其适应注意力计算。然后,应用 Sigmoid 激活函数,得到在宽度和高度维度上的注意力分数。这些分数用于指示不同位置的重要性。
8. 应用注意力: 将原始输入特征图与宽度和高度方向上的注意力分数相乘,得到 CA 注意力机制的输出。
2.YOLOv5添加注意力机制
在models/common.py文件中增加以下模块:
import torch
import torch.nn as nn
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn, c, h, w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y)x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out
在models/yolo.py文件下里的parse_model函数将类名加入进去,如下图:
创建添加CA模块的YOLOv5的yaml配置文件如下:
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Focus, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, CoordAtt, []],[-1, 1, Conv, [512, 3, 2]], # 6-P4/16[-1, 9, C3, [512]],[-1, 1, CoordAtt, []],[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32[-1, 3, C3, [1024]],[-1, 1, CoordAtt, []],[-1, 1, SPPF, [1024, 5]], # 12]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 8], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 17], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 13], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 23 (P5/32-large)[[20, 23, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
送书活动
用ChatGPT轻松玩转机器学习与深度学习
突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能!
关键点
(1)利用ChatGPT,轻松理解机器学习和深度学习的概念和技术。
(2)提供实用经验和技巧,更好地掌握机器学习和深度学习的基本原理和方法。
(3)系统全面、易于理解,不需要过多的数学背景,只需掌握基本的编程知识即可上手。
内容简介
随着机器学习和深度学习技术的不断发展和进步,它们的复杂性也在不断增强。对于初学者来说,学习这两个领域可能会遇到许多难题和挑战,如理论知识的缺乏、数据处理的困难、算法选择的不确定性等。此时,ChatGPT可以提供强有力的帮助。利用ChatGPT,读者可以更轻松地理解机器学习和深度学习的概念和技术,并解决学习过程中遇到的各种问题和疑惑。此外,ChatGPT还可以为读者提供更多的实用经验和技巧,帮助他们更好地掌握机器学习和深度学习的基本原理和方法。本书主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。
本书旨在为广大读者提供一个系统全面、易于理解的机器学习和深度学习入门教程。不需要过多的数学背景,只需掌握基本的编程知识即可轻松上手。
作者简介
段小手,曾供职于百度、敦煌网、慧聪网、方正集团等知名IT企业。有多年的科技项目管理及开发经验。负责的项目曾获得“国家发改委电子商务示范项目”“中关村现代服务业试点项目”“北京市信息化基础设施提升专项”“北京市外贸公共服务平台”等多项政策支持。著有《深入浅出Python机器学习》《深入浅出Python量化交易实战》等著作,在与云南省公安厅合作期间,使用机器学习算法有效将某类案件发案率大幅降低。
当当网链接:《用ChatGPT轻松玩转机器学习与深度学习 突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能 段小手》(段小手)【简介_书评_在线阅读】 - 当当图书
京东的链接:京东安全
关注博主、点赞、收藏、
评论区评论 “ 人生苦短,我爱python”
即可参与送书活动!
相关文章:
YOLOv5改进算法之添加CA注意力机制模块
目录 1.CA注意力机制 2.YOLOv5添加注意力机制 送书活动 1.CA注意力机制 CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地…...
Jmeter系列-阶梯加压线程组Stepping Thread Group详解(6)
前言 tepping Thread Group是第一个自定义线程组但,随着版本的迭代,已经有更好的线程组代替Stepping Thread Group了【Concurrency Thread Group】,所以说Stepping Thread Group已经是过去式了,但还是介绍一下 Stepping Thread …...
图像的几何变换(缩放、平移、旋转)
图像的几何变换 学习目标 掌握图像的缩放、平移、旋转等了解数字图像的仿射变换和透射变换 1 图像的缩放 缩放是对图像的大小进行调整,即 使图像放大或缩小 cv2.resize(src,dsize,fx0,fy0,interpolationcv2.INTER_LINEAR) 参数: src :输入图像dsize…...
计算机网络第四章——网络层(上)
提示:朝碧海而暮苍梧,睹青天而攀白日 文章目录 网络层是路由器的最高层次,通过网络层就可以将各个设备连接到一起,从而实现这两个主机的数据通信和资源共享,之前学的数据链路层和物理层也是将两端连接起来,但是却没有网…...
【MyBatis】一、MyBatis概述与基本使用
Mybatis概述 Mybatis是一个半自动化的框架,需要自己写sql语句,对比JDBC其有耦合性更低的SQL语句与Java代码,各司其职不相互冗杂,对比Hibernate与JPA其又有更灵活的SQL编写能力。 环境搭建 引入相关依赖并打jar包 <dependenc…...
Java事件机制简介 内含面试题
面试题分享 云数据解决事务回滚问题 点我直达 2023最新面试合集链接 2023大厂面试题PDF 面试题PDF版本 java、python面试题 项目实战:AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮…...
springMVC基础技术使用
目录 1.常用注解 1.1RequestMapping 1.2.RequestParam 1.3.RequestBody 1.4.PathVariable 2.参数传递 2.1 slf4j-----日志 2.2基础类型 2.3复杂类型 2.4RequestParam 2.5PathVariable 2.6RequestBody 2.7请求方法(增删改查) 3.返回值 3.1void …...
UI设计师的发展前景是否超越了平面设计?
这是一个现代经济学的典型话题:应该跟随趋势追逐风口,还是坚守成熟的“夕阳产业” UI 设计行业发展短短不过 20 多年,但平面设计这个“夕阳产业”最早可以追溯到上世纪的二三十年代。显而易见的答案是,更新兴的 UI 设计师得到的好…...
MyBatis的基本操作
目录 一、MyBatis的增删改查1、添加2、删除3、修改4、查询一个实体类对象5、查询集合 二、MyBatis的各种查询功能1、查询一个实体类对象2、查询一个list集合3、查询单个数据4、查询一条数据为map集合5、查询多条数据为map集合 三、特殊SQL的执行1、模糊查询2、批量删除3、动态设…...
【Tomcat】在SpringBoot项目中,Tomcat是如何处理HTTP请求的
目录 首先了解一下标准的Tomcat处理HTTP请求的流程 SpringBoot项目中Tomcat处理流程 首先了解一下标准的Tomcat处理HTTP请求的流程 监听端口:Tomcat 在启动时监听指定的端口,等待客户端发送请求。 接收请求:当客户端发起一个 HTTP 请…...
python开发基础篇1——后端操作K8s API方式
文章目录 一、基本了解1.1 操作k8s API1.2 基本使用 二、数据表格展示K8s常见资源2.1 Namespace2.2 Node2.3 PV2.4 Deployment2.5 DaemonSet2.6 StatefulSet2.7 Pod2.8 Service2.9 Ingress2.10 PVC2.11 ConfigMap2.12 Secret2.13 优化 一、基本了解 操作K8s资源api方式…...
【实践篇】Redis最强Java客户端(一)之Redisson入门介绍
Redisson入门介绍 文章目录 Redisson入门介绍1.1 Redisson简介1.1.1 起源和历史1.1.2 优势和特点1.1.3 与其他Java Redis客户端的比较 1.2 使用和配置1.2.1 依赖和SDK1.2.2 配置文件解析1.2.3 连接池配置 1.3 优雅的让Hash的某个Field过期2. 参考资料3. 源码地址4. Redis从入门…...
掌握AI助手的魔法工具:解密`Prompt`(提示)在AIGC时代的应用(下篇)
前言:在前面的两篇文章中,我们深入探讨了AI助手中的魔法工具——Prompt(提示)的基本概念以及在AIGC(Artificial Intelligence-Generated Content,人工智能生成内容)时代的应用场景。在本篇中&am…...
十)Stable Diffussion使用教程:Lora
LoRA 的全称为 Low-Rank Adaptation(低秩适应),是一种在机器学习中使用的方法,用于解决一些特殊问题,尤其是在数据中存在不均匀性的情况下表现较好。 要理解 LoRA,我们首先需要理解两个概念:低秩和适应。 低秩(Low Rank):在数学中,秩(Rank)是一个描述矩阵信息量的…...
kafka学习-消费者
目录 1、消费者、消费组 2、心跳机制 3、消费者常见参数配置 4、订阅 5、反序列化 基本概念 自定义反序列化器 6、位移提交 6.1、自动提交 6.2、手动提交 同步提交 异步提交 7、再均衡 7.1、定义与基本概念 7.2、缺陷 7.3、如何避免再均衡 7.4、如何进行组内分…...
Alibaba(商品详情)API接口
为了进行电商平台 的API开发,首先我们需要做下面几件事情。 1)开发者注册一个账号 2)然后为每个alibaba应用注册一个应用程序键(App Key) 。 3)下载alibaba API的SDK并掌握基本的API基础知识和调用 4)利…...
OLED透明屏触控:引领未来科技革命的创新力量
OLED透明屏触控技术作为一项颠覆性的创新,正在引领新一轮科技革命。它将OLED显示技术与触摸技术相结合,实现了透明度和触控功能的完美融合。 在这篇文章中,尼伽将通过引用最新的市场数据、报告和行业动态,详细介绍OLED透明屏触控…...
Ubuntu下QT操作Mysql数据库
本篇总结一下一下Ubuntu下QT操作Mysql数据库。 目录 1. 启动Mysql数据库服务器 2.查看QT支持的数据库驱动 3.连接数据库 4. 增加表和记录 5. 删除记录 6. 修改记录 7. 查询记录 8.完整代码和运行效果 常见错误总结: (1) 数据库服务没启动报错信息 (2) 有…...
sqli --【1--10】
Less-1(联合查询) 1.查看是否有回显 2.查看是否有报错 3.使用联合查询(字符注入) 3.1判断其列数 3.2 判断显示位置 3.3敏感信息查询 Less-2(联合查询) 1.查看是否有回显 2.查看是否有报错 3.使用…...
《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...
Wireshark 用命令行分析数据包
1,那些情况需要使用命令行 Wireshark一次性提供了太多的信息。使用命令行工具可以限制打印出的信息,最后只显示相关数据,比如用单独一行来显示IP地址。命令行工具适用于过滤数据包捕获文件,并提供结果给另一个支持UNIX管道的工具…...
LVS DR模式负载均衡群集部署
目录 1 LVS-DR 模式的特点 1.1 数据包流向分析 1.2 DR 模式的特点 2 DR模式 LVS负载均衡群集部署 2.1 配置负载调度器 2.1.1 配置虚拟 IP 地址 2.1.2 调整 proc 响应参数 2.1.3 配置负载分配策略 2.2 部署共享存储 2.3 配置节点服务器 2.3.1 配置虚拟 IP 地址 2.3.2…...
探讨前后端分离开发的优势、实践以及如何实现更好的用户体验?
随着互联网技术的迅猛发展,前后端分离开发已经成为现代软件开发的一种重要趋势。这种开发模式将前端和后端的开发工作分开,通过清晰的接口协议进行通信,旨在优化开发流程、提升团队协作效率,并最终改善用户体验。本文将深入探讨前…...
微博一面:JVM预热,你的方案是啥?
说在前面 在40岁老架构师 尼恩的读者社区(50)中,最近有小伙伴拿到了一线互联网企业如微博、阿里、汽车之家、极兔、有赞、希音、百度、网易、滴滴的面试资格,遇到一几个很重要的面试题: JVM预热,你的方案是啥?Springb…...
open与fopen的区别
1. 来源 从来源的角度看,两者能很好的区分开,这也是两者最显而易见的区别: open是UNIX系统调用函数(包括LINUX等),返回的是文件描述符(File Descriptor),它是文件在文件…...
Unity记录一些glsl和hlsl的着色器Shader逆向代码
以下内容一般基于 GLSL 300 之后 以下某些代码行,是“伪代码“,绝大部分是renderDoc 逆向产生标准代码 本人OpenlGL零基础,也不打算重头学 目录 Clip() 剔除函数 discard; FS最终颜色输出 out 和最终颜色相加方程…...
基于Sentinel的微服务保护
前言 Sentinel是Alibaba开源的一款微服务流控组件,用于解决分布式应用场景下服务的稳定性问题。Sentinel具有丰富的应用场景,它基于流量提供一系列的服务保护措施,例如多线程秒杀情况下的系统承载,并发访问下的流量控制ÿ…...
Collectors类作用:
一、Collectors类: 1.1、Collectors介绍 Collectors类,是JDK1.8开始提供的一个的工具类,它专门用于对Stream操作流中的元素各种处理操作,Collectors类中提供了一些常用的方法,例如:toList()、toSet()、to…...
LASSO回归
LASSO回归 LASSO(Least Absolute Shrinkage and Selection Operator,最小绝对值收敛和选择算子算法)是一种回归分析技术,用于变量选择和正则化。它由Robert Tibshirani于1996年提出,作为传统最小二乘回归方法的替代品。 损失函数 1.线性回…...
机器学习中的 K-均值聚类算法及其优缺点。
K-均值聚类算法是一种常见的无监督学习算法,它可以将数据集分成 K 个簇,每个簇内部的数据点尽可能相似,而不同簇之间的数据点应尽可能不同。下面详细讲解 K-均值聚类算法的优缺点: 优点: 简单易用:K-均值…...
网页的制作教案/手机seo快速排名
本文我们就来探索一下 Docker 的神秘世界,从零到一掌握 Docker 的基本原理与实践操作。别再守着前端那一亩三分地,是时候该开疆扩土了。 讲个故事 为了更好的理解 Docker 是什么,我们先来讲个故事: 我需要盖一个房子,于…...
大亚湾住建局网站建设工程规划/软文发布门户网站
Linux的内核源码都会包含文件linux\compile.h,所以先分析该文件内的内容,作为开篇。 1 汇编编译时不定义的内容 该文件的第一个内容是对宏__ASSEMBLY__的判断,这个宏的作用是避免在进行汇编编译的时候,不定义后续相关内容。这个宏…...
做外贸主要看什么网站/湘潭关键词优化服务
加密是将数据资料加密,使得非法用户即使取得加密过的资料,也无法获取正确的资料内容,所以数据加密可以保护数据,防止监听攻击。其重点在于数据的安全性。 身份认证是用来判断某个身份的真实性,确认身份后,系…...
安装 wordpress多用户/广告投放网
this.p{ m:2,b:2,loftPermalink:,id:fks_087065080095089068082086086065072084084066087087095066082,blogTitle:梯度的极坐标表达式,blogAbstract:\r\n\r\n有同学问:梯度的极坐标表达式是怎么得来的? 下面给出推导详细过程。\r\n\r\n\r\n\r\n\r\n,blog…...
宁波批发网站制作/域名搜索
随着发布会的临近,有关鸿蒙系统的消息越来越多。就连华为官方也开始发布新品预热海报,而正是这张海报“泄露了天机”。根据海报,可以肯定的是6月2日的发布会中鸿蒙操作系统会正式亮相。而在这两行字的下方,很明显地能够看出有两个…...
济南电子商务网站开发/关键词搜索爱站
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1、对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改造方式有两大类:(1)OVR/A(O…...