当前位置: 首页 > news >正文

自适应迭代扩展卡尔曼滤波算法AIEKF估计SOC VS 扩展卡尔曼估计SOC

自适应迭代扩展卡尔曼滤波算法(AIEK)

自适应迭代扩展卡尔曼滤波算法(AIEK)是一种滤波算法,其目的是通过迭代过程来逐渐适应不同的状态和环境,从而优化滤波效果。

该算法的基本思路是在每一步迭代过程中,根据所观测的数据和状态方程,对滤波器的参数进行自适应调整,以便更好地拟合实际数据的分布。具体而言,该算法包括以下步骤:

初始化:首先,为滤波器的初始参数设定一个初始值,这些参数包括状态转移矩阵、测量矩阵、过程噪声协方差和测量噪声协方差等。
预测:根据当前的状态方程和滤波器参数,对下一个状态进行预测,并计算预测误差。
校正:根据预测结果和实际观测数据,对预测进行修正,以便更好地拟合实际数据的分布。
参数更新:根据校正结果,自适应地调整滤波器参数,以便在下一个迭代过程中更好地拟合数据。
该算法具有自适应性和迭代性,能够逐渐适应不同的状态和环境,从而优化滤波效果。在实际应用中,可以根据具体问题选择不同的滤波器参数调整方法和迭代策略,以获得更好的滤波效果。

加载待辨识工况数据

load FUDS.mat;       %导入数据
Ut = FUDS.Voltage;   %测量电压
I = FUDS.Current;    %测量电流
cs0=[   1.2761;-0.2899;0.0365;-0.0449;0.0095];

计算SOC实验数据

soc_act = nan(1,N);
ocv = nan(1,N);
soc_act(1)=1;
ocv(1)=Ut(1);
for i=2:Nsoc_act(i)=soc_act(i-1)-I(i)/(Qn);nihe=[1.936,-7.108,9.204,-4.603,1.33,3.416];ocv(i)=polyval(nihe,soc_act(i)); 
end

FFRLS参数在线辨识算法

[R0,R1,R2,C1,C2] = FFRLS(Ut,I,Qn,nihe,ff,cs0);% 辨识参数图
t=1:N;figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,R0,'r.-','LineWidth',1);
legend('R0(Ω)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,R1,'g-.','LineWidth',1);
legend('R1(Ω)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,C1,'b-','LineWidth',1);
legend('C1(F)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,R2,'c--','LineWidth',1);
legend('R2(Ω)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,C2,'m-','LineWidth',1);
legend('C2(F)');

EKF滤波算法

SOCest_init=0.9;
P0=1e-3;     %状态误差协方差初值
Q=1e-8;      %过程噪声期望值
R=1;      %观测噪声期望值[SOC_ekf,volt]=EKF(I,Ut,dt,Qn,SOCest_init,N,Q,R,nihe,P0,R0,R1,R2,C1,C2);
error_V_EKF= Ut'-volt;
error_SOC_EKF= soc_act-SOC_ekf;      %滤波处理后的误差

AIEKF滤波算法

X_aiekf=zeros(3,N);  %定义状态向量x
X_aiekf(:,1)=[0;0;SOCest_init];%状态向量x初值设定
Q=1e-8;
R=1;
P0=0.01*eye(3);%定义协方差
f=0.1;
M=30;           %误差积累值窗口系数
[SOC_aiekf,Um]=AIEKF(I',Ut',X_aiekf,f,M,Q,R,N,P0,R0,R1,R2,C1,C2,Qn,nihe);error_V_AIEKF= Ut'-Um;
error_SOC_AIEKF= soc_act-SOC_aiekf;      %滤波处理后的误差

绘图

t=1:N;
figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,Ut,'r',t,volt,'b',t,Um,'g');
legend('端电压真实值','端电压EKF估计值','端电压AIEKF估计值'); figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,error_V_EKF,'b',t,error_V_AIEKF,'g');
legend('EKF端电压误差','AIEKF端电压误差'); % SOC估计结果图
figure
hold on;box on;
plot(SOC_aiekf,'b');%AIEKF
plot(SOC_ekf,'k');  %EKF
plot(soc_act,'r');
legend('AIEKF','EKF','参考值')
xlabel('时间(s)')
ylabel('SOC')
axis([0 12000 0 1])figure
hold on;box on;
plot(100*error_SOC_EKF,'k');
plot(100*error_SOC_AIEKF,'b');
legend('EKF','AIEKF')
xlabel('时间(s)')
ylabel('SOC误差百分数(%)')
axis([0 12000 -10 15])

仿真结果

FUDS工况下参考SOC曲线
在这里插入图片描述

DST工况下参考SOC曲线
在这里插入图片描述

FUDS工况下SOC估计对比图(EKF与参考值)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

FUDS工况下SOC估算绝对误差曲线图
在这里插入图片描述

在这里插入图片描述

DST工况下SOC估计对比图(EKF与参考值)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

DST工况下SOC估算绝对误差曲线图
在这里插入图片描述
在这里插入图片描述

FUDS工况下SOC估算曲线图(参考值 EKF AIEKF)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

SOC估算不同算法绝对误差曲线图

在这里插入图片描述
在这里插入图片描述

DST工况下SOC估算曲线图(参考值 EKF AIEKF)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

SOC估算不同算法绝对误差曲线图

在这里插入图片描述
在这里插入图片描述

相关文章:

自适应迭代扩展卡尔曼滤波算法AIEKF估计SOC VS 扩展卡尔曼估计SOC

自适应迭代扩展卡尔曼滤波算法(AIEK) 自适应迭代扩展卡尔曼滤波算法(AIEK)是一种滤波算法,其目的是通过迭代过程来逐渐适应不同的状态和环境,从而优化滤波效果。 该算法的基本思路是在每一步迭代过程中&a…...

2023-亲测有效-git clone失败怎么办?用代理?加git?

git 克隆不下来,超时 用以下格式: git clone https://ghproxy.com/https://github.com/Tencent/ncnn.git 你的网站前面加上 https://ghproxy.com/ 刷的一下就下完了!!...

An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。 GPT-3对基于小样本知识的VQA的实证研究 摘要引言相关工作方法OK-VQA上的实验VQAv2上的实验结论 摘要 基于知识的视觉问答(VQA)涉及回答需…...

2023高教社杯数学建模B题思路分析 - 多波束测线问题

# 1 赛题 B 题 多波束测线问题 单波束测深是利用声波在水中的传播特性来测量水体深度的技术。声波在均匀介质中作匀 速直线传播, 在不同界面上产生反射, 利用这一原理,从测量船换能器垂直向海底发射声波信 号,并记录从声波发射到…...

02-docker network

Docker网络 Docker网络是什么 Docker 网络是 Docker 容器之间进行通信和连接的网络环境。在 Docker 中,每个容器都有自己的网络命名空间,这意味着每个容器都有自己的网络接口、IP 地址和网络配置 Docker网络启动后,会在宿主机中建立一个名…...

栈和队列经典笔试题

文章目录 栈和队列的回顾💻栈🩳队列👟 栈和队列经典笔试题🔋有效的括号🎸用队列实现栈 🕯用栈实现队列🔭设计循环队列🧼 安静的夜晚 你在想谁吗 栈和队列的回顾💻 栈&am…...

No5.9:多边形内角和公式

#!/usr/bin/python # -*- coding: UTF-8 -*-#指定了编码,中文就能正常展示 # codingutf-8def calc_degree(n):#n代表边形的总数degree (n - 2) * 180#多边形内角和公式return degreeprint(calc_degree(3))#三角形的内角和 print(calc_degree(4))#四边形的内角和【小…...

EditPlus 配置python 及Anaconda中的python

若不是pycharm vscode 太大,太占内存,谁会想到用Notepad,EdirPlus 配置python呢!!! 话不多说,首先你自己安装好EditPlus。开始 菜单栏 选择 工具 -> 配置自定义工具 组名:python 命令:d:\*…...

linux 编译 llvm + clang

1. 需要下载以下三个压缩包,下载源码:Release LLVM 15.0.7 llvm/llvm-project GitHub clang-15.0.7.src.tar.xzcmake-15.0.7.src.tar.xzllvm-15.0.7.src.tar.xz​​​​​ 2. 解压后将 clang 源码放入 llvm/tools/ 下 3. 将解压后的 cmake-15.0.7…...

Mybatis 框架 ( 四 ) QueryWrapper

4.5.Wrapper条件构造器 Wrapper : 条件构造抽象类,最顶端父类 AbstractWrapper : 用于查询条件封装,生成 sql 的 where 条件 QueryWrapper : Entity 对象封装操作类,不是用lambda语法 UpdateWrapper &am…...

数据结构和算法之二分法查找

二分法查找,也称作二分查找或折半查找,是一种在有序数组中快速查找特定元素的算法。它采用分治法思想,通过将问题划分为规模更小的子问题,并且通过对子问题的查找来解决原问题。 二分法查找的思路是不断地将数组一分为二&#xf…...

系统日期如何在页面展示,框架是react或者vue3

安装插件dayjs或者moment.js 2.使用setInterval(useInterval)或者requestAnimationFrame react项目中useInterval的代码示例: import React, {useState } from react; import { useInterval } from "ahooks"; import moment fro…...

(二十二)大数据实战——Flume数据采集之故障转移案例实战

前言 本节内容我们完成Flume数据采集的故障转移案例,使用三台服务器,一台服务器负责采集nc数据,通过使用failover模式的Sink处理器完成监控数据的故障转移,使用Avro的方式完成flume之间采集数据的传输。整体架构如下:…...

前端小案例3:Flex弹性布局行内元素宽度自适应

前端小案例3:Flex弹性布局行内元素宽度自适应 项目背景:需要在一行上展示空调设备的三个模式(制冷、制热、通风)或者两个模式(制冷、制热);因为不同产品的模式数量不同,因此需要让模…...

纳尼?小说还要用看的?这可以听!无广!

这是一款听书软件,可以自定义书源,自己设置书架,页面简单易操作,无广告。 支持直接搜索书名,链接,图文,本地文件等方式听书 拥有30多主播声音,分类细致 支持倍速、添加BGM等...

【微服务部署】四、Jenkins一键打包部署NodeJS(Vue)前端项目步骤详解

本文介绍使用Jenkins一键将NodeJS(Vue)前端项目打包并上传到生产环境服务器,这里使用的是直接打包静态页面,发送到远程服务器Nginx配置目录的方式,首先确保服务器环境配置好,安装Nginx,运行目录…...

【前端】禁止别人调试自己的前端页面代码

无限debugger 前端页面防止调试的方法主要是通过不断 debugger 来疯狂输出断点,因为 debugger 在控制台被打开的时候就会执行由于程序被 debugger 阻止,所以无法进行断点调试,所以网页的请求也是看不到的代码如下: /** * 基础禁止…...

UDP的可靠性传输

UDP系列文章目录 第一章 UDP的可靠性传输-理论篇(一) 第二章 UDP的可靠性传输-理论篇(二) 文章目录 UDP系列文章目录前言1.TCP 和UDP格式对比2.UDP分片原理3.UDP 传输层应该注意问题4.MTU5.UDP 分片机制设计重点 一、ARQ协议什么…...

科研笔记:TPAMI submission guideline

1 author information Author Information - IEEE Transactions on Pattern Analysis and Machine Intelligence | IEEE Computer Society Digital Library 1.1 会议期刊extension 当一个TPAMI的提交基于之前的会议论文时,IEEE要求期刊论文是之前出版物的“实质…...

Python文件操作(02):打开文件、读文件、关闭文件

一、读文本文件 打开文件读文件内容关闭文件 1、在读取文件内容后进行解码操作 """ 1. 打开文件- 路径:相对路径:当前项目(读文件.py)所在的目录下查找需要读取的文件绝对路径:文件--右键--Copy Pat…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...