数学建模--退火算法求解最值的Python实现
目录
1.算法流程简介
2.算法核心代码
3.算法效果展示
1.算法流程简介
"""
1.设定退火算法的基础参数
2.设定需要优化的函数,求解该函数的最小值/最大值
3.进行退火过程,随机产生退火解并且纠正,直到冷却
4.绘制可视化图片进行了解退火整体过程
"""
2.算法核心代码
#利用退火算法求解函数的极值(优化问题)
import numpy as np
from random import random
import random
import math
import matplotlib.pyplot as plt
#设定退火算法的基础参数
x_min,x_max=(-3,3)#x的取值范围
alpha=0.99#降温系数为0.99
bg_temp=100#起始温度
ed_temp=0.01#最终温度(可设可不设)
cycle_number=500#循环次数
#设定需要优化的函数,求解该函数的最小值
"""
需要运用的化直接修改函数即可.
不过需要注意定义域的问题,主动修改一下定义域就行
"""
def opt_fun(x):y=11*np.sin(2*x)+7*np.cos(5*x)return y
#由于没有具体的数据,我们直接随机设置值就行随机产生初始值#随机产生本次退火解
def new_result(x):x1=x+bg_temp*random.uniform(-1,1)#退火解的合理性检查并且纠正:if x_min<=x1<=x_max:return x1elif x1<x_min:add_min=random.uniform(-1,1)return add_min*x_min+(1-add_min)*xelse:add_max=random.uniform(-1,1)return add_max*x_max+(1-add_max)*x
def draw_picture(x):plt.cla()#绘图的时候这里可以进行修改#注意这里y的取值范围[-25,25]要大体预估一下plt.axis([x_min-1,x_max+1,-25,25])m=np.arange(x_min,x_max,0.0001)plt.plot(m,opt_fun(m),color='red')plt.plot(x,opt_fun(x),marker='*',color='b',markersize='8')plt.title('Current Temperature={}'.format(T))plt.pause(0.1)#设定接受概率函数
def p(x,x1):return math.exp(-abs(opt_fun(x)-opt_fun(x1))/T)#循环退火过程,直到冷却求出最优解
def Annealing_cycle():global Tcount_number=0T=bg_tempx=random.uniform(x_min,x_max)print("*******************************************************************************************************************")while T>ed_temp:draw_picture(x)for i in range(cycle_number):x1=new_result(x)#求解最小值的过程if opt_fun(x)>=opt_fun(x1):x=x1else:if random.random()<=p(x,x1):x=x1else:continueT=T*alphacount_number=count_number+1print("当前执行第{}".format(count_number),"次退火过程"," 当前退火温度为:{}".format(T)," 当前最优值:{}".format(opt_fun(x)))print("*******************************************************************************************************************")print("本次退火优化过程共执行{}".format(count_number),"次求得的最优解为:{}".format(opt_fun(x)))print("*******************************************************************************************************************")
Annealing_cycle()
3.算法效果展示
相关文章:

数学建模--退火算法求解最值的Python实现
目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 """ 1.设定退火算法的基础参数 2.设定需要优化的函数,求解该函数的最小值/最大值 3.进行退火过程,随机产生退火解并且纠正,直到冷却 4.绘制可视化图片进行了解退火整体过程 &…...

地理地形sdk:Tatuk GIS Developer Kernel for .NET Crack
Tatuk GIS Developer Kernel for .NET 是一个变体,它是受控代码和 .NET GIS SDK,用于为用户 Windows 操作系统创建专业 GIS 软件的过程。它被认为是一个完全针对Win Forms 的.NET CIL,WPF 框架是针对C# 以及VB.NET、VC、Oxy 以及最终与.NET 的…...

Day_81-87 CNN卷积神经网络
目录 一. CNN卷积神经网络与传统神经网络的不同 1. 模型图 2. 参数分布情况 3. 卷积神经网络和传统神经网络的层次结构 4. 传统神经网络的缺点: 二. CNN的基本操作 1. 卷积 2. 池化 三. CNN实现过程 1. 算法流程图 2. 输入层 3. 卷积层 4. 激活层 5. 池化层 6. 全连…...

关于mybatisplus报错:Property ‘sqlSessionFactory‘ or ‘sqlSessionTemplat的问题
可能是mybatisplus版本不兼容的问题,我之前用的3.4.0,springboot版本是3.1.3,maven版本是3.8.8,运行的时候报了这个错。现在修改了mybatisplus的版本,如下图: 这样就不报错了。 大家可以在这里找合适的my…...
Spring AOP基础动态代理基于JDK动态代理实现
目录 1. 预备知识-动态代理 1.1 什么是动态代理 1.2 动态代理的优势 1.3 基于JDK动态代理实现 2. AOP 2.1 基本概念 2.2 AOP带来的好处 3. Spring AOP 3.1 前置通知 3.2 后置通知 3.3 环绕通知 3.4 异常通知 3.5 适配器 1. 预备知识-动态代理 1.1 什么是动态代理…...

第一章 计算机系统概述 五、中断和异常、系统调用
目录 一、中断的作用 二、中断的类型 1、内中断(异常) 2、外中断 三、中断机制的基本原理 四、系统调用 1、定义: 2、与库函数的区别 3、按功能分类 4、作用 一、中断的作用 1、“中断”是让操作系统内核夺回CPU使用权的唯一途径 …...

【C语言】文件操作(上)
一.什么是文件 文件是磁盘上的文件,文件中存放的数据不随程序的退出而销毁. 二.文件的打开与关闭 1.文件指针 每个被使用的文件都在内存中开辟了一个相应的文件信息区,用来存放文件的相关信息(如文件的名字,文件状态及文件当前的位置等&…...

【Linux】让笔记本发挥余热,Ubuntu20.04设置WiFi热点
Ubuntu20.04设置WiFi热点 由于卧室距离客厅较远,wifi信号太弱,体验极差。鉴于卧室的笔记本电脑是通过网线连接的客厅路由器,因此考虑将这台老破笔记本作为“路由器”,以便发挥它的余热。实验证明,上网速度提升数十倍&a…...

【云平台】遥感地信云平台收录
文章目录 国内1 航天宏图PIE-Engine2 商汤科技3 AI Earth4 EarthDataMiner国外结语国内 1 航天宏图PIE-Engine https://engine.piesat.cn/live-show-list 在这里插入图片描述 2 商汤科技 https://senseearth-cloud.com/map 3 AI Earth https://engine-aiearth.aliyun.com…...
23种设计模式之---单例模式
闲来无事学一下设计模式,希望这23种可以一直更下去,什么时候能更完呢,也许一个月,也许一年,也许断更 设计模式六大原则 本文是23篇的第一篇,在学习设计模式之前,你需要了解下六大原则。 1、开…...

蓝桥杯官网练习题(纸牌三角形)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 A,2,3,4,5,6,7,8,9 共 99 张纸牌排成一个正三角形(A 按 1 计算)。要求每个边的和相等。 下图就是一种排法。 这样的排法可能会有很多。 如果…...

一辆新能源汽车的诞生之旅:比亚迪常州工厂探营
作为在新能源汽车领域首屈一指的国产品牌,比亚迪近年来可以说是捷报频传,高奏凯歌。 以比亚迪常州工厂为例,据介绍该工厂当初规划设计时定下的生产目标,是年产量能够达到20万辆。然而在2023年上半年,该工厂光是主要销往…...

【算法专题突破】双指针 - 最大连续1的个数 III(11)
目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后: 1. 题目解析 题目链接:1004. 最大连续1的个数 III - 力扣(Leetcode) 这道题不难理解,其实就是求出最长的连续是1的子数组, 但是,他支…...
java实现备忘录模式
备忘录模式是一种行为设计模式,它允许您捕获一个对象的内部状态,并在稍后的时间点将其恢复。这对于需要撤销操作或恢复到先前状态的应用程序非常有用。以下是在 Java 中实现备忘录模式的一般步骤: 创建一个原发器类(Originator&am…...

aardio语言的通用数据表维护
import win.ui; /*DSG{{*/ var winform win.form(text"通用数据表维护";right617;bottom427;bgcolor15780518) winform.add( buttonAdd{cls"button";text"增加空行";left469;top40;right564;bottom80;flat1;z2}; buttonDel{cls"button&quo…...
手写RPC框架--7.封装响应
RPC框架-Gitee代码(麻烦点个Starred, 支持一下吧) RPC框架-GitHub代码(麻烦点个Starred, 支持一下吧) 封装响应 封装响应a.封装响应b.请求id生成器(雪花算法)c.抽象序列化d.建立序列化工厂e.hessian的序列化方式(拓展) 封装响应 a.封装响应 在core模块…...

Linux入门教程||Linux系统目录结构
登录系统后,在当前命令窗口下输入命令: ls / 你会看到如下图所示: 树状目录结构: 以下是对这些目录的解释: /bin: bin是Binary的缩写, 这个目录存放着最经常使用的命令。 /boot: 这里存放的是启动Linux时…...
LeetCode 88. 合并两个有序数组
文章目录 一、题目二、C# 题解 一、题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。 注意&a…...

C语言实现扫雷小游戏
1.首先扫雷游戏要存储布置好的雷信息,需要一个二维数组 不是雷放* 雷:# 不是雷:0 雷:1 2. 给2个二维数组 9*9 一个存放雷的信息,一个存放布置好雷的信息 3.为了防止在统计坐标周围的…...

【linux基础(五)】Linux中的开发工具(上)---yum和vim
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:Linux从入门到开通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学更多操作系统知识 🔝🔝 Linux中的开发工具 1. 前言2.…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...