LeetCode 88. 合并两个有序数组
文章目录
- 一、题目
- 二、C# 题解
一、题目
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
点击此处跳转题目。
示例 1:
输入: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出: [1,2,2,3,5,6]
解释: 需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入: nums1 = [1], m = 1, nums2 = [], n = 0
输出: [1]
解释: 需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入: nums1 = [0], m = 0, nums2 = [1], n = 1
输出: [1]
解释: 需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
二、C# 题解
非常优雅的几行代码hh,很简单的题目了:
public class Solution {public void Merge(int[] nums1, int m, int[] nums2, int n) {int i = m - 1, j = n - 1, k = m + n - 1;while (i >= 0 && j >= 0) nums1[k--] = nums1[i] > nums2[j] ? nums1[i--] : nums2[j--];while (j >= 0) nums1[k--] = nums2[j--];return;}
}
- 时间复杂度: O ( m + n ) O(m+n) O(m+n)。
- 空间复杂度: O ( 1 ) O(1) O(1)。
相关文章:
LeetCode 88. 合并两个有序数组
文章目录 一、题目二、C# 题解 一、题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。 注意&a…...
C语言实现扫雷小游戏
1.首先扫雷游戏要存储布置好的雷信息,需要一个二维数组 不是雷放* 雷:# 不是雷:0 雷:1 2. 给2个二维数组 9*9 一个存放雷的信息,一个存放布置好雷的信息 3.为了防止在统计坐标周围的…...
【linux基础(五)】Linux中的开发工具(上)---yum和vim
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:Linux从入门到开通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学更多操作系统知识 🔝🔝 Linux中的开发工具 1. 前言2.…...
C++学习之list的实现
在了解学习list实现之前我们首先了解一下关于迭代器的分类: 按功能分类: 正向迭代器 反向迭代器 const正向迭代器 const反向迭代器 按性质分类: 单向迭代器 只能 例如单链表 双向迭代器 可,也可-- 例如双…...
一种高效且节约内存的聚合数据结构的实现
一种高效且节约内存的聚合数据结构的实现 在特定的场景中,特殊定制数据结构能够得到更加好的性能且更节约内存。 聚合函数GroupArray的问题 GroupArray聚合函数是将分组内容组成一个个数组,例如下面的例子: SELECT groupArray(concat(ABC…...
机器学习(10)---特征选择
文章目录 一、概述二、Filter过滤法2.1 过滤法说明2.2 方差过滤2.3 方差过滤对模型影响 三、相关性过滤3.1 卡方过滤3.2 F检验3.3 互信息法3.4 过滤法总结 四、Embedded嵌入法4.1 嵌入法说明4.2 以随机森林为例的嵌入法 五、Wrapper包装法5.1 包装法说明5.2 以随机森林为例的包…...
Python之数据库(MYSQL)连接
一)数据库SQL语言基础 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database…...
【建站教程】使用阿里云服务器怎么搭建网站?
使用阿里云服务器快速搭建网站教程,先为云服务器安装宝塔面板,然后在宝塔面板上新建站点,阿里云服务器网以搭建WordPress网站博客为例,阿小云来详细说下从阿里云服务器CPU内存配置选择、Web环境、域名解析到网站上线全流程&#x…...
【自然语言处理】关系抽取 —— MPDD 讲解
MPDD 论文信息 标题:MPDD: A Multi-Party Dialogue Dataset for Analysis of Emotions and Interpersonal Relationships 作者:Yi-Ting Chen, Hen-Hsen Huang, Hsin-Hsi Chen 期刊:LREC 2020 发布时间与更新时间:2020 主题:自然语言处理、关系抽取、对话场景、情感预测 数…...
深入理解JVM虚拟机第三篇:JVM的指令集架构模型和JVM的生命周期
文章目录 一:JVM的指令集架构模型 1:基于栈式架构的特点...
[小尾巴 UI 组件库] 组件库配置与使用
文章归档于:https://www.yuque.com/u27599042/row3c6 组件库地址 npm:https://www.npmjs.com/package/xwb-ui?activeTabreadme小尾巴 UI 组件库源码 gitee:https://gitee.com/tongchaowei/xwb-ui小尾巴 UI 组件库测试代码 gitee:…...
Linux系统中fork()函数的理解
fork() 函数是一个在Unix和类Unix操作系统中常见的系统调用,用于创建一个新的进程,该进程是调用进程(父进程)的副本。fork() 函数的工作原理如下: 1. 当父进程调用 fork() 时,操作系统会创建一个新的进程&a…...
Linux网络编程:网络协议及网络传输的基本流程
目录 一. 计算机网络的发展 二. 网络协议的认识 2.1 对于协议分层的理解 2.2 TCP/IP五层协议模型 2.3 OSI七层模型 三. 网络传输的流程 3.1 同一网段中计算机通信的流程 3.2 不同网段中计算机设备的通信 3.3 对于IP地址和MAC地址的理解 3.4 数据的封装和解包 四. 总结…...
【大数据之Kafka】十、Kafka消费者工作流程
1 Kafka消费方式 (1)pull(拉)模式:消费者从broker中主动拉取数据。(Kafka中使用) 不足:如果Kafka中没有数据,消费者可能会陷入循环,一直返回空数据。 &#…...
如何确保ChatGPT的文本生成对特定行业术语的正确使用?
确保ChatGPT在特定行业术语的正确使用是一个重要而复杂的任务。这涉及到许多方面,包括数据预处理、模型训练、微调、评估和监控。下面我将详细介绍如何确保ChatGPT的文本生成对特定行业术语的正确使用,并探讨这一过程中的关键考虑因素。 ### 1. 数据预处…...
行业追踪,2023-09-11
自动复盘 2023-09-11 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…...
LVS + Keepalived群集
文章目录 1. Keepalived工具概述1.1 什么是Keepalived1.2 工作原理1.3 Keepailved实现原理1.4 Keepalived体系主要模块及其作用1.5 keepalived的抢占与非抢占模式 2. 脑裂现象 (拓展)2.1 什么是脑裂2.2 脑裂的产生原因2.3 如何解决脑裂2.4 如何预防脑裂 …...
springboot将jar改成war
一、maven项目 1、修改pom文件 <packaging>war</packaging>2、添加Servlet API依赖,Spring Boot的Starter依赖通常会包含这个依赖,所以你可能已经有了,没有就需要添加 <dependency><groupId>javax.servlet</gr…...
从9.10拼多多笔试第四题产生的01背包感悟
文章目录 题面基本的01背包问题本题变式 本文参考: 9.10拼多多笔试ak_牛客网 (nowcoder.com) 拼多多 秋招 2023.09.10 编程题目与题解 (xiaohongshu.com) 题面 拼多多9.10笔试的最后一题,是一道比较好的01背包变式问题,可以学习其解法加深对…...
搭建自己的OCR服务,第一步:选择合适的开源OCR项目
一、OCR是什么? 光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。 亦即将图像中的文字进行识别,并以文本的形式返回。 二、OCR的基本流程 1…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
