【算法基础】时间复杂度和空间复杂度
目录
1 算法的评价
2 算法复杂度
2.1 时间复杂度(Time Complexity)
2.1.1 如何计算时间复杂度:
2.1.2 常见的时间复杂度类别与示例
2.2 空间复杂度
2.2.1 如何计算空间复杂度
2.2.2 常见的空间复杂度与示例
3 时间复杂度和空间复杂度计算示例
例子1:计算数组中所有元素的和。
例子2:快速排序算法。
例子3:递归实现斐波那契数列。
例子4:非递归实现的斐波那契数列。
例子5:二分查找算法。
例子6:冒泡排序算法。
1 算法的评价
评价算法的性能和效果是计算机科学和数据科学中的关键任务之一。如何评价算法的优劣可以从以下几方面展开:
时间复杂度和空间复杂度是算法性能分析的关键指标,它们用于衡量算法在处理不同规模输入时的时间和空间资源消耗。
2 算法复杂度
2.1 时间复杂度(Time Complexity)
时间复杂度是指在算法执行过程中,所需的时间资源与问题规模之间的关系。它主要衡量的是算法的执行效率,用于评估算法在不同规模数据下的操作时间。
时间复杂度通常使用大O符号表示,表示算法运行时间的增长率。
需要注意的是,时间复杂度只考虑算法的主要操作数量级,忽略了常数因子和低阶项。因此,两个时间复杂度相同的算法在实际执行中可能有着不同的执行效率。
2.1.1 如何计算时间复杂度:
- 分析每个操作的时间复杂度,包括循环、条件语句和函数调用。
- 计算每个操作的执行次数,通常是输入规模的函数。
- 合并所有操作的复杂度,通常选择最大的那个作为算法的时间复杂度。
时间复杂度的计算涉及以下几个方面:
基本操作次数: 时间复杂度的计算通常关注算法中执行的基本操作次数,例如赋值操作、比较操作、算术运算等。通常将这些操作的数量与输入规模相关联。
循环结构: 如果算法包含循环结构(例如for循环、while循环),需要考虑循环的迭代次数以及每次迭代中的基本操作数量。
递归调用: 对于递归算法,需要考虑递归的深度以及每次递归调用的时间复杂度。通常使用递归方程(递归关系式)来表示递归算法的时间复杂度。
分支结构: 如果算法包含分支结构(例如if语句),需要考虑每个分支的执行次数以及分支中的基本操作数量。
输入规模: 时间复杂度的计算通常与输入规模有关。输入规模表示算法操作的数据量或问题的大小,通常用符号n表示。
2.1.2 常见的时间复杂度类别与示例
常数时间复杂度(O(1)):无论问题规模多大,算法的执行时间都保持不变。例如,直接访问数组中的一个元素。
线性时间复杂度(O(n)):随着问题规模的增大,算法的执行时间也按线性比例增长。例如,遍历一个数组或链表中的所有元素。
对数时间复杂度(O(logn)):算法执行时间随着问题规模的增大而增长,但不是线性关系,而是以对数速率增长。例如,二分查找算法。
平方时间复杂度(O(n^2)):算法的执行时间与问题规模的平方成正比。例如,双重循环嵌套的算法。
指数时间复杂度(O(2^n)):算法的执行时间呈指数级增长,非常低效。例如,穷举法解决NP完全问题。
O(1) - 常数时间复杂度: 算法的执行时间是固定的,与输入规模无关。示例:
def constant_time_algorithm(arr):return arr[0]
O(log n) - 对数时间复杂度: 算法的执行时间随着输入规模的增加以对数方式增加。示例:
def binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return midelif arr[mid] < target:low = mid + 1else:high = mid - 1return -1
O(n) - 线性时间复杂度: 算法的执行时间与输入规模成正比。示例
def linear_search(arr, target):for i in range(len(arr)):if arr[i] == target:return ireturn -1
O(n^2) - 平方时间复杂度: 算法的执行时间与输入规模的平方成正比。示例:
def bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]
2.2 空间复杂度(Space Complexity)
空间复杂度是指算法在执行过程中所需的额外内存空间,它与问题规模之间的关系。空间复杂度用于评估算法的内存占用情况和资源消耗。
通常使用大O符号表示空间复杂度,表示算法所需的额外内存空间与问题规模之间的增长关系。
2.2.1 如何计算空间复杂度
- 分析算法的每个数据结构、变量和递归调用,以确定它们的空间占用。
- 计算每个数据结构和变量的空间占用,通常是常数项和与输入规模相关的项的和。
- 合并所有空间占用,通常选择最大的那个作为算法的空间复杂度。
空间复杂度的计算包括以下几个方面:
固定内存消耗: 指算法在运行过程中需要固定数量的内存空间,与输入规模无关。常见的固定内存消耗包括函数参数、常量变量、全局变量等。
额外数据结构: 如果算法使用了额外的数据结构来存储信息,如数组、列表、树、堆栈、队列等,需要考虑这些数据结构所占用的内存空间。通常需要考虑数据结构的大小和数量。
递归调用: 递归算法会使用栈空间来存储每一次递归调用的状态。递归的深度和每次递归调用的内存消耗会影响空间复杂度。
临时变量: 算法中使用的临时变量和计算过程中的中间结果也会占用内存空间。需要考虑这些变量的数量和大小。
输入数据的存储: 输入数据的存储也需要考虑在内。如果算法需要将整个输入数据存储在内存中,则空间复杂度与输入数据的大小成正比。
2.2.2 常见的空间复杂度与示例
常数空间复杂度(O(1)):算法所需的额外内存空间是一个常量值,不随问题规模的增大而改变。例如,只使用固定数量的变量或常量大小的数组。
线性空间复杂度(O(n)):算法所需的额外内存空间随问题规模的增大而线性增长。例如,需要根据输入构建一个同等大小的新数据结构。
平方空间复杂度(O(n^2)):算法所需的额外内存空间随问题规模的增大而平方级增长。例如,需要构建一个二维数组来存储所有可能的组合。
指数空间复杂度(O(2^n)):算法所需的额外内存空间随问题规模的增大而以指数级增长。例如,需要存储所有可能的子集或排列。
需要注意的是,空间复杂度只考虑算法本身所需的额外内存空间,不包括输入数据所占用的存储空间。另外,空间复杂度也可以根据最坏情况或平均情况来进行分析。
O(1) - 常数空间复杂度: 算法的内存使用与输入规模无关,占用固定的内存空间。示例:
def constant_space_algorithm(arr):result = 0for num in arr:result += numreturn result
O(n) - 线性空间复杂度: 算法的内存使用与输入规模成正比。示例:
def linear_space_algorithm(n):arr = [0] * nreturn arr
O(n^2) - 平方空间复杂度: 算法的内存使用与输入规模的平方成正比。示例:
def quadratic_space_algorithm(n):arr = [[0] * n for _ in range(n)]return arr
3 时间复杂度和空间复杂度计算示例
例子1:计算数组中所有元素的和。
def sum_array(arr):sum = 0for num in arr:sum += numreturn sum
时间复杂度:O(n),其中n是数组中的元素数量。遍历数组需要依次访问每个元素一次,因此时间复杂度与数组的大小成线性关系。
空间复杂度:O(1)。算法只使用了一个额外的变量存储累加和,并没有占用随问题规模变化的额外内存。
例子2:快速排序算法。
def quicksort(arr, left, right):if left < right:pivot = partition(arr, left, right)quicksort(arr, left, pivot - 1)quicksort(arr, pivot + 1, right)def partition(arr, left, right):pivot = arr[right]i = left - 1for j in range(left, right):if arr[j] <= pivot:i += 1arr[i], arr[j] = arr[j], arr[i]arr[i + 1], arr[right] = arr[right], arr[i + 1]return i + 1
时间复杂度:最好情况下为O(nlogn),最坏情况下为O(n^2)。快速排序平均情况下的划分操作需要O(n)的时间复杂度,且需要递归n次,因此总体复杂度为O(nlogn)。但在最坏情况下,划分不平衡导致某一边的规模接近n,此时的时间复杂度变为O(n^2)。
空间复杂度:最好情况下为O(logn),最坏情况下为O(n)。快速排序使用递归调用,每次递归调用都需要保存当前函数的堆栈信息,而在最坏情况下,可能需要递归n次,所以空间复杂度为O(n)。而在最好情况下,递归调用树的高度为logn,因此空间复杂度为O(logn)。
例子3:递归实现斐波那契数列。
def fibonacci(n):if n <= 0:return 0if n == 1:return 1return fibonacci(n - 1) + fibonacci(n - 2)
时间复杂度:指数级别,为O(2^n)。由于递归调用会重复计算相同的斐波那契数,时间复杂度呈指数级增长。
空间复杂度:最好和最坏情况下均为O(n),取决于递归调用的最大深度n。每次递归调用都需要在堆栈中保存函数的局部变量和参数,因此空间复杂度为O(n)。
该代码实现了递归方式计算斐波那契数列的函数。
时间复杂度:指数级别,为 O(2^n)。每次递归调用都会产生两个新的递归调用,因此递归树的总节点数是指数级别的,递归树的深度是 n。所以,总体的时间复杂度是 O(2^n)。
空间复杂度:指数级别,为 O(n)。在递归调用过程中,需要使用栈来保存每次递归调用的参数和局部变量。由于递归树的深度是 n,所以空间复杂度是 O(n)。
需要注意的是,由于斐波那契数列的计算可以通过动态规划或迭代的方式进行优化,以降低时间复杂度和空间复杂度。递归方式计算斐波那契数列在面对较大的 n 值时,会导致非常高的时间和空间消耗。
例子4:非递归实现的斐波那契数列。
def fibonacci(n):if n <= 0:return 0a = 0b = 1for _ in range(2, n+1):c = a + ba = bb = creturn b
这段代码实现了求解斐波那契数列的函数。
该代码的时间复杂度是 O(n),其中 n 是要计算的斐波那契数的索引。在 for 循环中,需要执行 n-1 次加法操作。因此,时间复杂度是线性级别的。
该代码的空间复杂度是 O(1),因为除了输入参数外,只使用了常数空间来存储变量 a、b 和 c。无论输入的 n 多大,空间占用都是固定的。
例子5:二分查找算法。
def binary_search(arr, target):low = 0 # 常数时间复杂度high = len(arr) - 1 # 常数时间复杂度while low <= high:mid = (low + high) // 2 # 常数时间复杂度if arr[mid] == target:return midelif arr[mid] < target:low = mid + 1else:high = mid - 1return -1
该算法的时间复杂度为O(logn),在二分查找算法中,每次迭代会将问题规模缩小一半,因此时间复杂度为对数级别。具体而言,时间复杂度是由二分查找的迭代次数决定的。
空间复杂度是 O(1),因为除了输入参数外,没有使用额外的数据结构或变量来存储数据。无论输入规模如何变化,空间占用都是固定的。
例子6:冒泡排序算法。
def bubble_sort(arr):n = len(arr)for i in range(n): # 线性时间复杂度for j in range(0, n-i-1): # 线性时间复杂度if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]
时间复杂度是 O(n^2),其中 n 是数组 arr 的长度。冒泡排序算法的时间复杂度由两层嵌套循环决定。外层循环执行 n 次,内层循环从 0 到 n-i-1 遍历,其中 i 是外层循环的迭代次数。因此,总的比较次数是 n + (n-1) + (n-2) + ... + 2 + 1,即等差数列求和公式,可以简化为 (n^2 - n) / 2,近似为 n^2。因此,该代码的时间复杂度是 O(n^2)。
该代码的空间复杂度是 O(1),因为除了输入参数外,没有使用额外的数据结构或变量来存储数据。无论输入规模如何变化,空间占用都是固定的。
计算时间复杂度和空间复杂度通常需要分析算法的每个操作以及它们的频率和内存占用。最终,选择合适的数据结构和算法以及考虑性能优化策略都有助于确保算法在不同规模的问题上都能高效运行。
相关文章:
【算法基础】时间复杂度和空间复杂度
目录 1 算法的评价 2 算法复杂度 2.1 时间复杂度(Time Complexity) 2.1.1 如何计算时间复杂度: 2.1.2 常见的时间复杂度类别与示例 2.2 空间复杂度 2.2.1 如何计算空间复杂度 2.2.2 常见的空间复杂度与示例 3 时间复杂度和空间复杂度…...
解决微信小程序不支持TextEncoder/TextDecoder对象
问题描述:在使用小程序开发者工具开发小程序中使用到了CRC算法,其中有一行代码使用到了TextEncoder对象,在开发工具中一切正常,到手机上会报出错误错误如下: MiniProgramError TextEncoder is not defined ReferenceEr…...
Qt下SVG格式图片应用
SVG格式图片介绍 svg格式图片又称矢量图,该种格式的图片不同于png等格式的图片,采用的并不是位图的形式来组织图片,而是采用线条等组织图片,svg格式是图片的文件格式是xml,可以通过文件编译器打开查看svg格式内容。 …...
python异常处理
参考语法:https://docs.python.org/zh-cn/3/tutorial/errors.html 在编写代码的时候,如果你写的程序出现报错,程序就会停止运行,后面的代码就不再执行。 如果程序发生错误,可以在代码中添加异常处理,保证程…...
go get命令不再具有安装功能
go get功能呢 一直以来,我们知道go get命令可以借助代码管理工具通过远程拉取或更新代码包及其依赖包,并自动完成编译和安装。整个过程就像安装一个App一样简单。 go get命令可以动态获取远程代码包,命令在内部实际上分成了两步操作&#x…...
合宙Air724UG LuatOS-Air lvgl7-lvgl(矢量字体)
如何用开发板实现lvgl加载外部矢量字体功能 目录名称 如何用开发板实现lvgl加载外部矢量字体功能 简介材料准备API 说明步骤 1. 将字库芯片接在模块spi上2. 版本定制3. 初始化spi4. 设置字体5.字体使用测试固件和脚本显示效果字号灰度最佳粗细值对应表常见问题 1. 设置68号字体…...
LRU的实现
题目内容 实现一个 LRUCache 类,三个接口: LRUCache(int capacity) 创建一个大小为 capacity 的缓存get(int key) 从缓存中获取键为 key 的键值对的 valueput(int key, int value) 向缓存中添加键值对 (key, value) 要求 get 和 put 的均摊时间复杂度…...
consul 备份还原导入导出
正文 工作中要保证生产环境部署的consul的集群能够安全稳定地对外提供服务,即使出现系统故障也能快速恢复,这里将讲述部分的备份还原操作及KV的导入导出操作。 备份与还原 配置文件、服务器状态 需要备份的主要有两类数据:consul相关的配置文…...
6.网络编程套接字(下)
文章目录 4.TCP流套接字编程4.1ServerSocket API4.2Socket API4.3TCP中的长短连接4.4示例一:一发一收(长连接)4.4.1TCP服务端4.4.2TCP客户端 4.5示例二:请求响应(短连接)4.5.1TCP服务端4.5.2TCP客户端 4.6再…...
4.3-内置后置PostProcess处理器深度讲解
在reader里面注册了很多Bean定义 reader会调取register()来注册配置类 调用上句,就会把配置类注册到BeanDefinitionMap中去 配置类有了、解析配置类的处理器有了 然后, 在第三步refresh() 进行IOC容器刷新中的invokeBeanPostProcessors(beanFactory…...
LeetCode(力扣)45. 跳跃游戏 IIPython
LeetCode45. 跳跃游戏 II 题目链接代码 题目链接 https://leetcode.cn/problems/jump-game-ii/description/ 代码 class Solution:def jump(self, nums: List[int]) -> int:if len(nums) 1:return 0curdis 0nextdis 0step 0for i in range(len(nums)):nextdis max(…...
mysql5.8 免安装版(压缩包)win10 安装
目录 1、下载MySQL5.82、如何安装、配置my.ini配置注意 3初始化mysql3.1. 初始化mysql3.2. 安装mysql服务3.3. 启动mysql3.4. 登录mysql3.5. 修改root密码3.6. 配置远程连接 Mysql5.8安装踩坑记录,推荐使用Docker安装,我是电脑虚拟化可能会蓝屏没用这个功…...
STM32-HAL库06-硬件IIC驱动FM24CL16B非易失存储器
STM32-HAL库06-IIC驱动FM24CL16B非易失存储器 一、所用材料: STM32VGT6自制控制板 STM32CUBEMX(HAL库软件) MDK5 二、所学内容: 通过HAL库的硬件IIC对FM24CL16B存储器进行写与读取操作。 三、CUBEMX配置: 第一步…...
python-wordcloud词云
导入模块 from wordcloud import WordCloud import jieba import imageio import matplotlib.pyplot as plt from PIL import ImageGrab import numpy as npwordcloud以空格为分隔符号,来将文本分隔成单词 PIL pillow模块 img imageio.imread(image.png)这行代码…...
单元测试与自测
单元测试在百度百科的定义: 自测在百度百科的定义: 单元测试是测一个类或一个函数,自立门第main函数,不依赖于项目,预期的是这个类或函数是没有问题的。程序编码完成之后至各种测试再到用户使用出现的任何bug都是单元测…...
2023-09-12 LeetCode每日一题(课程表 IV)
2023-03-29每日一题 一、题目编号 1462. 课程表 IV二、题目链接 点击跳转到题目位置 三、题目描述 你总共需要上 numCourses 门课,课程编号依次为 0 到 numCourses-1 。你会得到一个数组 prerequisite ,其中 prerequisites[i] [ai, bi] 表示如果你…...
RabbitMQ基础
目录 MQ MQ概述 MQ 的优势 1.应用解耦 2.异步提速 3.削峰填谷 MQ 的劣势 1.系统可用性降低 2.系统复杂度提高 3.一致性问题 使用 MQ 需要满足什么条件呢? RabbitMQ 简介 编辑RabbitMQ 中的相关概念 RabbitMQ 提供了 6 种工作模式 JMS java实现Ra…...
ITIL 4—创建、交付和支持—创建、交付和支持服务的价值流
4. 创建、交付和支持服务的价值流 本章节提供了有关如何: 记录一个价值流以理解工作流程如何贯穿该组织了解创建一个新服务的原型价值流了解支持一个现场服务的原型价值流 本章将帮助从业者理解: 价值流在 服务价值系统(SVS) 中的作用价值流的分类如…...
微信怎么给自己发消息
前段时间看到一份数据调查,说是到目前为止,全球使用微信的用户已达到10亿多人次,天啊,多么强大的用户群体! 这么多人喜欢使用微信,相信大家都知道,微信里面有一个特俗功能,可以自己…...
正交试验设计法
正交实验设计 一、什么是正交试验设计法? 是一种成对测试交互的系统的统计方法。它提供了一种能对所有变量对的组合进行典型覆盖(均匀分布)的方法。 可以从大量的试验点中挑出适量的、有代表性的点,利用“正交表”,…...
Scrum工具:助力快速迭代和高效交付
随着软件开发行业的不断发展,敏捷开发方法逐渐成为了主流。Scrum作为敏捷开发中最具代表性的工具之一,其在流程设计、团队协作以及项目管理等方面发挥着重要作用。本文将深入探讨Scrum的优势以及如何运用Scrum提升团队效率与质量。 一、Scrum敏捷开发工…...
通过Python行命令搭建HTTP服务器结合内网穿透实现外网访问
文章目录 1.前言2.本地http服务器搭建2.1.Python的安装和设置2.2.Python服务器设置和测试 3.cpolar的安装和注册3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 Python作为热度比较高的编程语言,其语法简单且语句清晰,而且python有…...
Android T 窗口层级其三 —— 层级结构树添加窗口
文章目录 序节点添加Task以DefaultTaskDisplayArea为父节点以Task为父节点 ActivityRecordWindowTokenWindowState以WindowToken为父节点以ActivityRecord为父节点 小结调用场景添加差异 流程分析添加log堆栈打印流程LauncherStatusBar 序 尚未添加窗口的层级结构树࿰…...
3D虚拟数字人定制,推动传统文化传播新高度
“数字人”成为“汉语盘点2022”年度十大新词语。伴随着科技发展成长的年轻人逐渐成为消费主力军,如何在虚拟世界与年轻一代用户互动以抓住95后年轻人受众,成为不少传统文化品牌发力的重点。 数字人“天妤”,在3D虚拟数字人定制中࿰…...
kubernetes进阶 (三) 基础练习
前两天朋友给了我几道题,看着挺简单的,但实际做的时候发现坑不少,这里做下笔记 一、镜像构建部署lnmp 1、构建镜像 nginx、php、mysql 要求使用centos7作为基础镜像 2、使用deployment部署上面的容器,要求3个服务要放到一个pod中(虽然这样是…...
数据结构 排序
目录 第八章 排序8.1排序的基本概念1. 概念2. 排序算法的分类 8.2 插入排序8.2.1 直接插入排序8.2.2 算法效率分析8.2.2 折半插入排序总结8.2.3 希尔排序 8.3 交换排序8.3.1冒泡排序8.3.2快速排序(了解栈的过程) 8.4 选择排序8.4.1 简单选择排序8.4.2 堆…...
Cpp/Qtday050912cpp基础
目录 实现一个图形类(Shape),包含受保护成员属性:周长、面积, 公共成员函数:特殊成员函数书写 定义一个圆形类(Circle),继承自图形类,包含私有属性&#x…...
Git diff 使用 vimdiff 对比差异
在Ubuntu中使用Git时,可使用命令行的git diff命令来对比两次提交的差异,但是这种对比查看方式无法直观地查看修改的差异,在对比和查看时不太方便。 可以使用vimdiff作为Git diff的对比工具,这样就方便了许多,Git的配置…...
c小白勇闯结构体!!!!
目录 1.结构体类型的声明 1.结构的基础 2.结构体的声明 3.结构体成员的类型 4结构体变量的定义和初始化 2.结构体成员的访问 3.结构体传参 1.结构体类型的声明 1.结构的基础 结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量 结构体变量的创…...
【DevOps核心理念基础】3. 敏捷开发最佳实践
一、敏捷开发最佳实践 1.1 项目管理 1.2 需求管理 1.3 技术架构 1.4 技术开发 1.5 测试 二、敏捷开发最佳实践 2.1 敏捷开发的执行细节 三、全面的DevOps工具链 四、版本控制和协作开发工具 4.1 集中式版本控制工具 4.2 分布式版本控制工具 一、敏捷开发最佳实践 …...
最近国语视频在线观看/抖音搜索seo排名优化
package com.asse.ljb;import java.util.ArrayList; import java.util.List; import java.util.ListIterator;/*** list集合* 1.代表一个元素有序的集合,集合中的每个元素都有其对应的顺序索引* 2.允许使用重复元素,可以通过索引来访问指定位置的集合元素* 3.默认按元素的添加顺…...
日照网站建设官方网站/百度人工
1.首先确定要计算时间的时区,jdk8支持,根据时区ID来判断是否处于夏令时。 2.根据要判断时区的id和对应的时间,即可判断出是否处于夏令时。 public static boolean currentTimeIsDaylightTime(long time) { Calendar calendar Calendar.ge…...
南昌制作网站的公司吗/网站推广营销
文章目录 一、题目🔸题目描述🔸输入输出🔸样例1二、代码参考作者:KJ.JK🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🍂个人博客首页: KJ.JK 💖系列专栏:华为OD机试(Java&Python&C语言) 一、题目 🔸题目描述 对输入的字符串进…...
如何做好外贸网站建设/百度小说排行榜完本
Spring Aware是什么 Spring提供Aware接口能让Bean感知Spring容器的存在,即让Bean可以使用Spring容器所提供的资源。 Spring Aware的分类 几种常用的Aware接口如下。 Aware接口说明ApplicationContextAware能获取Application Context调用容器的服务ApplicationEv…...
站长工具seo诊断/免费推广的app有哪些
2019独角兽企业重金招聘Python工程师标准>>> java中final关键字通常指“这是无法改变的”。 可能使用final的三种情况:数据、方法、类。 1. final 数据 对于基本类型,final使数值恒定不变; 对于引用类型,final使引用…...
网站快速搜索/网站搜索引擎优化主要方法
http://blog.csdn.net/yangyk125/article/details/29216149 多媒体编程——摄像头录像预览 1、 新建MFC工程,选择对话框工程。 2、新建一个static控件。 3、修改ID,并且在OnInitDialog里面获取指针。 4、加一个成员函数,并且在OnInitDialog…...