分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
目录
- 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
- 分类效果
- 基本描述
- 模型描述
- 程序设计
- 参考资料
分类效果
基本描述
1.Matlab实现WOA-CNN-BiGRU多特征分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;运行主程序即可,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
模型描述
CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
BiGRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。
程序设计
- 完整程序和数据获取方式私信博主回复MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测。
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU多特征分类…...

mac使用squidMan设置代理服务器
1,下载squidMan http://squidman.net/squidman/ 2, 配置SquidMan->Preference 3, mac命令窗口配置 export http_proxy export https_porxy 4,客户端配置(centos虚拟机) export http_proxyhttp://服务器ip:8080 export https…...

大数据Flink(七十八):SQL 的水印操作(Watermark)
文章目录 SQL 的水印操作(Watermark) 一、为什么要有 WaterMark...

【Linux】Qt Remote之Remote开发环境搭建填坑小记
总体思路 基于WSL2(Ubuntu 22.04 LTS)原子Alpha开发板进行Qt开发实验,基于Win11通过vscode remote到WSL2,再基于WSL2通过Qt 交叉编译,并通过sshrsync远程到开发板,构建起开发工具链。 Step1 基于Win11通过…...

ATFX汇市:离岸人民币大幅升值,昨日盘中跌破7.3关口
ATFX汇市:美国CPI数据即将公布之际,周一美元指数大跌,带动离岸人民币升值0.85%,实现3月14日以来的最大单日升值幅度,当日汇率(USDCNH)最低触及7.292,突破7.3000关口。消息面上&#…...

Spring Boot 配置 Knife4j
一、引入 maven <!-- 引入 knife4j 文档--> <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-openapi2-spring-boot-starter</artifactId> <version>4.1.0</version> </dependency>二…...

Java项目中遇到uv坐标如何转换成经纬度坐标
将UV坐标(通常指平面坐标,如二维地图坐标)转换为经纬度坐标(地理坐标)通常需要知道一个参考点的经纬度坐标,以及两者之间的比例关系。这是因为UV坐标通常用于在地图上绘制图形或标记点,而经纬度…...

std : : unordered_map 、 std : : unordered_set
一.简介 std::unordered_map 是C标准库中的一种关联容器,它提供了一种用于存储键-值对的数据结构,其中键是唯一的,且不会按特定顺序排序。与 std::map 不同,std::unordered_map 使用哈希表作为其底层数据结构,因此它具…...

Python解释器和Pycharm的傻瓜式安装部署
给我家憨憨写的python教程 有惊喜等你找噢 ——雁丘 Python解释器Pycharm的安装部署 关于本专栏一 Python解释器1.1 使用命令提示符编写Python程序1.2 用记事本编写Python程序 二 Pycharm的安装三 Pycharm的部署四 Pycharm基础使用技巧4.1 修改主题颜色4.2 修改字体4.3 快速修…...

14 Python使用网络
概述 在上一节,我们介绍了如何在Python中使用Json,包括:Json序列化、Json反序列化、读Json文件、写Json文件、将类对象转换为Json、将Json转换为类对象等内容。在这一节,我们将介绍如何在Python中使用网络。Python网络编程覆盖的范…...

AI ChatGPT 各大开放平台一览 大模型 Prompt
AI ChatGPT 各大开放平台一览 大模型 Prompt 国内 百度 ERNIE Bot 文心一言阿里巴巴 通义千问腾讯 Hunyuan BOT 混元 (暂未发布)华为 盘古旷视 ChatSpot科大讯飞 讯飞星火网易 子曰(暂未发布)京东 言犀奇安信 Q-GPT商汤科技 商量S…...

全球汽车安全气囊芯片总体规模分析
安全气囊系统是一种被动安全性的保护系统,它与座椅安全带配合使用,可以为乘员提供有效的防撞保护。在汽车相撞时,汽车安全气囊可使头部受伤率减少25%,面部受伤率减少80%左右。 汽车安全气囊芯片是整个系统的控制核心,并…...

USB适配器应用芯片 国产GP232RL软硬件兼容替代FT232RL DPU02直接替代CP2102
USB适配器,是英文Universal Serial Bus(通用串行总线)的缩写,而其中文简称为“通串线”,是一个外部总线标准,用于规范电脑与外部设备的连接和通讯。是应用在PC领域的接口技术, 移动PC由于没有电池,电源适配…...

卫星物联网生态建设全面加速,如何抓住机遇?
当前,卫星通信无疑是行业最热门的话题之一。近期发布的华为Mate 60 Pro“向上捅破天”技术再次升级,成为全球首款支持卫星通话的大众智能手机,支持拨打和接听卫星电话,还可自由编辑卫星消息。 据悉,华为手机的卫星通话…...

SAP GUI 8.0 SMARTFORMS 使用SCR LEGACY TEXT EDITOR GUI8.00 禁用MSWORD
Smartforms使用WORD作为编辑器是很痛苦的一个事情,不支持拖拽,还很慢,各种不习惯,总之是非常的不舒服,能导致失眠。 在S/4以前的系统,可以使用TCODE I18N或者程序RSCPSETEDITOR或者暴力党直接改表TCP0I来…...

【SpringMVC】JSR303与拦截器的使用
文章目录 一、JSR3031.1 JSR303是什么1.2 JSR 303的好处包括1.3 常用注解1.4 实例1.4.1 导入JSR303依赖1.4.2 规则配置1.4.3 编写校验方法1.4.4 编写前端 二、拦截器2.1 拦截器是什么2.2 拦截器与过滤器的区别2.3.应用场景2.4 快速入门2.5.拦截器链2.6 登录拦截权限案例2.6.1 L…...

Qt案例-编译阿里云OSS对象存储C++ SDK源码,并进行简单下载,上传数据,显示进度等相关功能
项目中用到了阿里云OSS对象存储来保存数据,由于以前没用过这个库,就下载了C版的sdk源码重新编译了一次,并使用Qt调用;不得不说这可能是我编译源码最轻松的一次。 目录标题 简述OSS图形化管理工具编译源码Qt 添加引用常用 Endpoint…...

JAVA异常输出到控制台
在处理异常时,可以根据情况选择使用 e.getMessage()、e.toString() 或 e.printStackTrace() 来获得或打印异常相关信息。 e.printStackTrace() 是 Java 中用于打印异常堆栈跟踪信息的方法。当出现异常时,可以调用 e.printStackTrace() 将异常信息输出到控…...

html5学习笔记23-vue 简略学习,未完
https://www.runoob.com/vue3/vue3-tutorial.html Vue.js是一套构建用户界面的渐进式框架。Vue 只关注视图层, 采用自底向上增量开发的设计。 https://unpkg.com/vuenext https://unpkg.com/vue3.2.36/dist/vue.global.js <script src"https://cdn.staticf…...

【Fiddler】mac m1 机器上使用 fiddler 抓取接口
mac m1 机器上使用 fiddler 抓取接口(非虚拟机模式) author: jwensh date:2023.09.12 文章目录 mac m1 机器上使用 fiddler 抓取接口(非虚拟机模式)1. 环境准备2. 进行配置3. 使用情况 1. 环境准备 想要抓取 mac 上浏览器的接口&a…...

Swift如何使用Vision来识别获取图片中的文字(OCR),通过SwiftUI视图和终端命令行,以及一系列注意事项
在过去的一年里,我发现苹果系统中的“文字搜图片”功能非常好用,这个功能不光 iPhone/iPad,Mac 也有,找一些图片真的很好用。但是遇到了一个问题:这个功能需要一段时间才能找到新的图片,而且没法手动刷新&a…...

c++ 学习 之 常函数 和 常对象
前言 常函数 成员函数后加 const 我们可以称这个函数为 常函数 常函数内不可以修改成员属性 成员属性声明时加关键字 mutable 后,在常函数中依然可以修改 常对象 常对象 声明对象前加 const 称该对象为常对象 常对象只能调用常函数 正文 常函数 class Person…...

LLM - 批量加载 dataset 并合并
目录 一.引言 二.Dataset 生成 1.数据样式 2.批量加载 ◆ 主函数调用 ◆ 基础变量定义 ◆ 多数据集加载 3.数据集合并 ◆ Concat ◆ interleave ◆ stopping_strategy ◆ interleave_probs 三.总结 一.引言 LLM 模型基于 transformer 进行训练,需要先…...

Debian 初始化命令备忘
本文地址:blog.lucien.ink/archives/541 以 Debian 11 为例,主要用于备忘。 deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye main contrib non-free deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-updates main contrib non…...

二维矩阵的DFS算法框架
二维矩阵的DFS算法框架 关于岛屿的相似题目: 岛屿数量 – 二维矩阵的dfs算法封闭岛屿数量 – 二维矩阵的dfs算法统计封闭岛屿的数目统计子岛屿不同岛屿的数量 # 二叉树遍历框架 def traverse(root):if not root:return # 前序遍历traverse(root.left)# 中序遍历t…...

pytest实现日志按用例输出到指定文件中
场景 执行自动化用例时,希望日志按用例生成一个文件,并且按用例所在文件生成目录,用例失败时便于查看日志记录 实现方式 pytest.ini文件 在pytest.ini配置文件中设置配置项(定义日志输出级别和格式) log_clitrue l…...

程序员面试逻辑题
红白帽子推理 答案: 这个题有点像数学归纳法,就是假设有 A A A和 B B B两个人是黑色的帽子,这样的话第一次开灯, A A A看到 B B B是黑色的,其他人都是白色的,那么 A A A会觉得 B B B是那个黑色的࿰…...

自动创建设备节点udev机制实现
自动创建设备节点udev机制实现过程: 1.当插入设备,内核会向udev发送一个事件,其中包含着设备的信息。 2.udev会根据收到的设备信息匹配相应的规则文件。 3.udev会根据规则文件中的配置,创建一个唯一的设备节点文件。通常存储在/d…...

目标检测YOLO实战应用案例100讲-基于小样本学习和空间约束的濒危动物目标检测
目录 前言 相关技术介绍 2.1 卷积神经网络 2.1.1 基本结构 2.1.2 网络训练...

苹果数据恢复软件:Omni Recover Mac
Omni Recover是一款十分实用的Mac数据恢复软件,为用户提供了简单、安全、快速和高效的数据恢复服务。如果您遇到了Mac或iOS设备中的数据丢失和误删情况,不要着急,不妨尝试一下Omni Recover,相信它一定会给您带来惊喜。 首先&…...