Linux —— 信号阻塞
目录
一,信号内核表示
sigset_t
sigprocmask
sigpending
二,捕捉信号
sigaction
三,可重入函数
四,volatile
五,SIGCHLD
信号常见概念
- 实际执行信号的处理动作,称为信号递达Delivery;
- 信号从产生到递达的状态,称为信号未决Pending;
- 进程可选择阻塞某个信号;
- 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才会执行递达动作;
- 阻塞和忽略是不同的,信号被阻塞就不会递达,忽略是递达后可选的一种处理动作;
一,信号内核表示
- 每个信号都有两个标志:阻塞、未决,及一个函数指针表示的动作;信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志;
- SIGHUP信号,未产生也未阻塞,如递达时将执行默认动作;
- SIGINT信号,产生过但被阻塞,暂时不能递达,处理动作为忽略;
- SIGQUIT信号,未产生,如产生将被阻塞,处理动作为用户自定义函数;如该信号在阻塞前产生多次,POSIX允许系统递送该信号一次或多次,Linux常规信号在递达前产生多次只计一次,而实时信号在递达前产生多次可依次放在一个队列内;
sigset_t
- 每个信号只有一个bit的未决标志,0或1,不记录该信号产生的次数;阻塞标志也是如此;
- 未决和阻塞标志可用相同的数据类型sigset_t来存储,sigset_t称为信号集;该类型可表示每个信号的有效或无效;
//信号集操作函数
//在使用sigset_t类型的变量之前,一定要调用sigempty或sigfillset初始化,以使信号集处于确定状态;
//初始化后,即可调用sigaddset和sigdelset在信号集中添加或删除某种有效信号;
#include <signal.h>
int sigemptyset(sigset_t* set) //初始化信号集,使所有信号对应bit清零,表示该信号集不包含任何有效信号;
int sigfillset(sigset_t* set) //初始化信号集,使所有信号对应bit清零,表示该信号集的有效信号;
int sigaddset(sigset_t* set, int signo)
int sigdelset(sigset_t* set, int signo)
int sigismember(const sigset_t* set, int signo)
sigprocmask
- 此函数可读取或更改进程的信号屏蔽字(阻塞信号集);
#include <signal.h>
int sigprocmask(int how, const sigset_t* set, sigset_t* oset);
- 如oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出;
- 如set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改;
- 如oset和set都是非空指针,则先将原来的信号屏蔽字备份到oset,然后根据set和how更改信号屏蔽字;
- 如当前信号屏蔽字为mask,则下表说明了how参数的可选值;
- 如调用此函数解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达;
sigpending
- 检测未决信号;
#include <signal.h>
int sigpending(sigset_t* set)
#include <iostream>
#include <signal.h>
#include <unistd.h>
using namespace std; void show_pending(sigset_t* pending){ for(int i=1; i<32; i++){ if(sigismember(pending, i)) cout<<"1"; else cout<<"0"; } cout<<endl;
} int main()
{ sigset_t in, out; sigemptyset(&in); sigemptyset(&out); sigaddset(&in, 2); sigprocmask(SIG_SETMASK, &in, &out); int count=0; sigset_t pending; while(1){ sigpending(&pending); show_pending(&pending); sleep(1); if(count==10){ sigprocmask(SIG_SETMASK, &out, &in); //恢复2号信号后, 2信号立即递达并执行默认操作 cout<<"my: "; show_pending(&in); cout<<"recover default: "; show_pending(&out); } count++; } return 0;
}
[wz@192 Desktop]$ g++ test.cpp -o test
[wz@192 Desktop]$ ./test
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
^C0100000000000000000000000000000
0100000000000000000000000000000
0100000000000000000000000000000
0100000000000000000000000000000
0100000000000000000000000000000
0100000000000000000000000000000
0100000000000000000000000000000
0100000000000000000000000000000
二,捕捉信号
如信号的处理动作是用户自定义函数,在信号递达时就调用该函数,称为捕捉信号;由于信号处理函数的代码在用户空间,处理过程比较复杂;如,用户程序注册了SIGQUIT信号的处理函数sighandler,当前正在执行main函数,此时发生中断或异常,切换达到内核态;在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达;内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函数,sighandler和main函数使用不同的堆栈空间,不存在调用和被调用的关系,是两个独立的控制流程;sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态;如没有新的信号递达,再返回用户态就是恢复main函数的上下文继续执行;
sigaction
当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如这种信号再次产生,那么会被阻塞到当前处理结束为止;
如在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字;
#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
using namespace std;void handler(int signo){cout<<"get a signo: "<<signo<<endl;exit(10);
}int main(){struct sigaction act, oact;act.sa_handler = handler;act.sa_flags = 0;sigemptyset(&act.sa_mask);//act.sa_restorer = nullptr;//act.sa_sigaction = nullptr;sigaction(SIGINT, &act, &oact);while(1){cout<<"running..."<<endl;sleep(1);}return 0;
}
用户态,内核态;用户态需通过系统调用来访问内核数据,调用系统调用时系统会自动切换 身份;CPU会存在一个权限相关的寄存器数据,标识所处状态;每个用户进程都有自己的用户级页表,而OS只有一份内核页表;由于用户态和内核态的权限级别不同,所能看到的资源也是不一样的;
实时信号,不会丢失,会排队执行;
三,可重入函数
#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
using namespace std;void show(int signo){int i=0;while(i<5){cout<<"show(), signo: "<<signo<<endl;i++;sleep(1);}
}void handler(int signo){cout<<"handler calling..."<<endl;show(signo);
}int main(){struct sigaction act, oact;act.sa_handler = handler;act.sa_flags = 0;sigemptyset(&act.sa_mask);sigaction(SIGINT, &act, &oact);show(999);return 0;
}
[wz@192 Desktop]$ ./test
show(), signo: 999
show(), signo: 999
show(), signo: 999
^Chandler calling...
show(), signo: 2
show(), signo: 2
show(), signo: 2
show(), signo: 2
show(), signo: 2
show(), signo: 999
show(), signo: 999
像以上,insert插入函数被不同控制流调用,可能在第一次调用还没返回时,就再次进入该函数,称为重入;insert函数访问一个全局链表,有可能因为插入而造成错乱,像这样的函数称为不可重入函数;反之,如一函数只访问自己的局部变量或参数,称为可重入函数;所学的大部分函数都是不可重入的;
如函数符合以下条件之一,则是不可重入:
- 调用了malloc或free,因malloc也是也是用全局链表来管理堆的;
- 调用了标准I/O函数,标准I/O库的很多实现都以不可重入的方式使用全局数据结构;
四,volatile
C语言关键字,保持内存的可见性;
#include <stdio.h>
#include <signal.h>int flag=0;
void handler(int signo){flag=1;printf("handler calling, get signo: %d\n", signo);
}int main(){signal(2, handler);while(!flag); //注意没有循环体printf("process quit normal!\n");return 0;
}
[wz@192 Desktop]$ gcc -o test test.c
[wz@192 Desktop]$ ./test
^Chandler calling, get signo: 2
process quit normal!
//优化级别1
[wz@192 Desktop]$ gcc -o test test.c -O1
[wz@192 Desktop]$ ./test
^Chandler calling, get signo: 2
^Chandler calling, get signo: 2
^Chandler calling, get signo: 2
优化后,flag被放在了CPU的寄存器当中,while循环的flag并不是内存中的最新flag;使用volatile关键字修饰变量后,则该变量不允许在被优化,对该该变量的任何操作都必须在真实的内存中进行;
#include <stdio.h>
#include <signal.h>volatile int flag=0;
void handler(int signo){flag=1;printf("handler calling, get signo: %d\n", signo);
}int main(){signal(2, handler);while(!flag); //注意没有循环体printf("process quit normal!\n");return 0;
}
[wz@192 Desktop]$ gcc -o test test.c -O1
[wz@192 Desktop]$ ./test
^Chandler calling, get signo: 2
process quit normal!
五,SIGCHLD
SIGCHLD是第17号信号;进程wait、waitpid函数清理僵死进程,父进程可阻塞等待子进程结束,也可非阻塞查询是否有子进程结束等待清理(轮询);第一种方式父进程阻塞了,就不能处理自己的工作,第二种方式父进程在处理自己的工作同时还要记得轮询,程序实现复杂;
其实,子进程在终止时会给父进程发送SIGCHLD信号,该信号默认处理动作为忽略,父进程可自定义SIGCHLD信号的处理函数;这样父进程只需专心处理自己的工作,不必关心子进程;子进程终止时通知父进程,父进程在信号处理函数中调用wait清理子进程即可;
由于UNIX的历史原因,要想不产生僵死进程,还可在父进程调用sigaction时将SIGCHLD处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理,不会产生僵死进程,也不会通知父进程;系统默认的忽略动作和用户用sigaction函数自定义的忽略,通常是没有区别的,但这是特例;此方法对于Linux可用,但不保证在其他UNIX系统上都可使用;
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <signal.h>void handler(int signo){printf("father get signo: %d\n", signo);pid_t id;//可能有多个子进程while((id=waitpid(-1,NULL,WNOHANG))>0){printf("wait child success: %d\n", id);}printf("child is quit! %d\n", getpid());
}int main(){signal(SIGCHLD, handler);pid_t cid;if((cid=fork()) == 0){printf("child: %d\n", getpid());sleep(3);exit(1);}while(1){printf("father process...!\n");sleep(1); //可以提前被唤醒}return 0;
}
[wz@192 Desktop]$ gcc -o test test.c
[wz@192 Desktop]$ ./test
father process...!
child: 99919
father process...!
father process...!
father get signo: 17
wait child success: 99919
child is quit! 99918
father process...!
father process...!
father process...!
father process...!
如不设置signal,子进程终止时,就会产生僵死进程;
如设置为SIG_IGN,子进程终止时,自动清理;
//如设置为忽略,fork出来的子进程在终止时会自动清理,不会产生僵死进程 signal(SIGCHLD, SIG_IGN);
等待子进程,避免Z进程内存泄露,可能需获取子进程的退出码;父进程不关心子进程退出码,可不wait,如关心退出码必须wait;
相关文章:

Linux —— 信号阻塞
目录 一,信号内核表示 sigset_t sigprocmask sigpending 二,捕捉信号 sigaction 三,可重入函数 四,volatile 五,SIGCHLD 信号常见概念 实际执行信号的处理动作,称为信号递达Delivery;信…...

【【萌新编写riscV之计算机体系结构之CPU 总二】】
萌新编写riscV之计算机体系结构之CPU 总二(我水平太差总结不到位) 在学习完软件是如何使用之后 我们接下来要面对的问题是 整个程序是如何运转的这一基本逻辑 中央处理器(central processing unit,CPU)的任务就是负责提取程序指令࿰…...

error:03000086:digital envelope routines::initialization error
项目背景 前端vue项目启动突然报错error:03000086:digital envelope routines::initialization error 我用的开发工具是vscode,node版本是v18.17.0 前端项目版本如下↓ 具体报错如下↓ 报错原因 node版本过高 解决方法 1输入命令 $env:NODE_OPTIONS"--op…...

暴涨130万粉仅用3个月,一招转型成B站热门UP主
- 导语 起号难、找不到内容方向、没流量、没粉丝等等运营困境环绕在创作者之间,近期,有黑马UP主短时间内就在B站涨粉百万,飞升成为热门UP主,以下,飞瓜数据(B站版)剖析黑马UP主运营技巧…...
【Linus】vim的使用:命令模式、底行模式、插入模式、视图模式、替换模式的常用操作介绍
目录 注意:以下操作前提是要确保你输入法是英文模式 一、进入和退出各个模式的方法 1.命令模式 2.底行模式 3.插入模式 4.视图模式 5.替换模式 二、在命令模式中一些常用的操作 1.移动光标 2.删除文字 3.复制 4.替换 5.撤销上一次操作 6.更改 7.跳至指…...
leetcode第362场周赛补题
8029. 与车相交的点 - 力扣(LeetCode) 思路:差分数组 class Solution { public:int numberOfPoints(vector<vector<int>>& nums) {int diff[102] {}; for(auto p : nums)//差分{diff[p[0]] ;diff[p[1] 1] -- ;}int res …...

SpringMvc 之crud增删改查应用
目录 1.创建项目 2.配置文件 2.1pom.xml文件 2.2 web.xml文件 2.3 spring-context.xml 2.4 spring-mvc.xml 2.5 spring-MyBatis.xml 2.6 jdbc.properties 数据库 2.7 generatorConfig.xml 2.8 日志文件log4j2 3.后台代码 3.1 pageBean.java 3.2切面类 3.3 biz层…...

【业务功能109】微服务-springcloud-springboot-Skywalking-链路追踪-监控
Skywalking skywalking是一个apm系统,包含监控,追踪,并拥有故障诊断能力的 分布式系统 一、Skywalking介绍 1.什么是SkyWalking Skywalking是由国内开源爱好者吴晟开源并提交到Apache孵化器的产品,它同时吸收了Zipkin /Pinpoint …...

《向量数据库指南》——AI原生向量数据库Milvus Cloud 2.3架构升级
架构升级 GPU 支持 早在 Milvus 1.x 版本,我们就曾经支持过 GPU,但在 2.x 版本中由于切换成了分布式架构,同时出于对于成本方面的考虑,暂时未加入 GPU 支持。在 Milvus 2.0 发布后的一年多时间里,Milvus 社区对 GPU 的呼声越来越高,再加上 NVIDIA 工程师的大力配合——为…...
Flutter中实现交互式Webview的方法
前言: Flutter是一款强大的跨平台移动应用开发框架,而Webview则是在应用中展示Web内容的重要组件。本文将介绍如何在Flutter应用中实现交互式的Webview,以便为用户提供更加丰富的内容和功能。 1. 引入webview_flutter插件 要在Flutter应用中…...
【Java Web】用Redis优化登陆模块
使用Redis存储验证码 验证码需要频繁访问和封信,对性能要求高;验证码不需要永久保存,通常在很短时间内失效;分布式部署,存在Session共享问题; 使用Redis存储登陆凭证 处理每次请求时,都要查询用…...

华为云云耀云服务器L实例评测|docker私有仓库部署手册
【软件安装版本】【集群安装(是)(否)】 版本号 文档编写 文档审核 创建日期 修改日期 1.0 jzg jzg 2023.9.13 一. 部署规划与架构 1. 规划:(集群:网络规划&…...
JAVA-3DES对称加解密工具(不依赖第三方库)
import javax.crypto.Cipher; import javax.crypto.spec.SecretKeySpec; import java.nio.charset.StandardCharsets; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException;public class EncryptUtil {// 密钥public static final String ENCR…...
基于Matlab卡尔曼滤波的IMU和GPS组合导航数据融合(附上源码+数据)
本文介绍了如何使用Matlab实现惯性测量单元(IMU)和全球定位系统(GPS)组合导航数据融合的卡尔曼滤波算法。通过将IMU和GPS的测量数据进行融合,可以提高导航系统的精度和鲁棒性。我们将详细介绍卡尔曼滤波的原理和实现步…...
net自动排课系统完整源码(适合智慧校园)
目录 1 net自动排课系统完整源码(适合智慧校园) 1.1 后台管理admin 1.1.1 菜单 1.1.2 教学计划 net自动排课系统完整源码(适合智慧校园) 后台管理admin<%@ Page Language="C#" AutoEventWireup="true" CodeBehind=&...
Matlab匿名函数教程
Matlab匿名函数是一种方便、简洁的函数定义方式,可以在不使用函数文件的情况下,直接在命令行或脚本中定义函数。本文将介绍Matlab匿名函数的基本语法和用法。 匿名函数的基本语法如下: function_handle (input_variables) expression其中&…...

【Vue】一文让你进入Vue的大门
Vue简介 官网 ● 英文官网 ● 中文官网 介绍与描述 Vue历史 Vue 是一套用来动态构建用户界面的渐进式JS框架 构建用户界面:把数据通过某种办法变成用户界面 渐进式:Vue可以自底向上逐层的应用,简单应用只需要一个轻量小巧的核心库,…...
Linux mmap读/写触发共享文件页生命周期
概述 Linux的mm内存子系统的核心功能就要要管理各种类型的page,确保能高效分配和释放,让物理内存得以最大化使用。初识内存系统往往关注的是page的申请和管理流程,容易忽略page的释放回收流程,其实理解mm中的内存回收和释放也是最核心的机制。 Linux内核为了支持各种场景…...

linux 用户、组操作
一、创建用户并设置密码 #创建用户 duoergun useradd duoergun #设置用户 duoergun 密码 passwd duoergun二、创建组 #创建组 qingdynasty groupadd qingdynasty三、用户添加到组,用户从组删除 #添加用户duoergun到组qingdynasty usermod -aG qingdynasty duoer…...
MySQL报错this is incompatible withsal mode=only full group by处理办法
问题说明 报这个错误是指,在查询分组时展示了非分组字段。举例: select id , user_name from user group by user_name;上述语句查询id和user_name字段,其中user_name进行了分组,id并没有分组,这时候mysql就会报上述…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...