当前位置: 首页 > news >正文

【C++】封装unordered_map和unordered_set(用哈希桶实现)

前言:
       前面我们学习了unordered_map和unordered_set容器,比较了他们和map、set的查找效率,我们发现他们的效率比map、set高,进而我们研究他们的底层是由哈希实现。哈希是一种直接映射的方式,所以查找的效率很快。与学习红黑树和map、set的思路一样,我们现在学完了unordered_map和unordered_set,本章将模拟实现底层结构来封装该容器!

    作者建议在阅读本章前,可以先去看一下前面的红黑树封装map和set——红黑树封装map和set

这两篇文章都重在强调泛型编程的思想,上一篇由于是初认识,作者讲解的会更详细一点~

目录

(一)如何复用一个哈希桶

1、结点的定义:

2、两个容器各自的模板参数类型​编辑

3、改造哈希桶

(二)哈希桶的迭代器的模拟实现

1、begin()和end()的模拟实现

2、operator*和operator->及operator!=和operator==的模拟实现 

3、operator ++的模拟实现

(三)迭代器和改造哈希桶的总代码

(四)封装unordered_map和unordered_set


(一)如何复用一个哈希桶

我们学习过知道,unordered_map和unordered_set容器存放的结点并不一样,为了让它得到复用我们就需要对哈希桶进行改造,将哈希桶改造的更加泛型一点,既符合Key模型,也符合Key_Value模型。

1、结点的定义:

 所以我们这里还是和封装map和set时一样,无论是Key还是Key_Value,都用一个类型T来接收,这里高维度的泛型哈希表中,实现还是用的是Kye_Value模型,K是不能省略的,同样的查找和删除要用,故我们可以引出两个容器各自模板参数类型。


2、两个容器各自的模板参数类型

如何取到想要的数据:

  • 我们给每个容器配一个仿函数
  • 各传不同的仿函数,拿到想要的不同的数据

同时我们再给每个容器配一个哈希函数。

3、改造哈希桶

通过上面1和2,我们可以把各自存放的数据泛化成data:

这样我们哈希桶的模板参数算是完成了

  • 哈希函数我们可以自由选择并传
  • 仿函数在各自容器的封装中实现,用于比较时我们可以取出各自容器想要的数据

我们把上一篇文章封装的哈希桶拿来改造:

//K --> 键值Key,T --> 数据
//unordered_map ->HashTable<K, pair<K, V>, MapKeyOfT> _ht;
//unordered_set ->HashTable<K, K, SetKeyOfT> _ht;
template<class K, class T, class KeyOfT, class HashFunc>
class HashTable
{template<class K, class T, class KeyOfT, class HashFunc>friend class __HTIterator;typedef HashNode<T> Node;
public:typedef __HTIterator<K, T, KeyOfT, HashFunc> iterator;iterator begin(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){return iterator(cur, this);}}return end();}iterator end(){return iterator(nullptr, this);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}size_t GetNextPrime(size_t prime){const int PRIMECOUNT = 28;static const size_t primeList[PRIMECOUNT] ={53,         97,         193,       389,       769,1543,       3079,       6151,      12289,     24593,49157,      98317,      196613,    393241,    786433,1572869,    3145739,    6291469,   12582917,  25165843,50331653,   100663319,  201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};//获取比prime大那一个素数size_t i = 0;for (i = 0; i < PRIMECOUNT; i++){if (primeList[i] > prime)return primeList[i];}return primeList[i];}pair<iterator, bool> Insert(const T& data){HashFunc hf;KeyOfT kot;iterator pos = Find(kot(data));if (pos != end()){return make_pair(pos, false);}//负载因子 == 1 扩容 -- 平均每个桶挂一个结点if (_tables.size() == _n){//size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;size_t newSize = GetNextPrime(_tables.size());if (newSize != _tables.size()){vector<Node*> newTable;newTable.resize(newSize, nullptr);//遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];//再对每个桶挨个遍历while (cur){Node* next = cur->_next;size_t hashi = hf(kot(cur->_data)) % newSize;//转移到新的表中cur->_next = newTable[hashi];newTable[hashi] = cur;cur = next;}//将原表置空_tables[i] = nullptr;}newTable.swap(_tables);}}size_t hashi = hf(kot(data));hashi %= _tables.size();//头插到对应的桶即可Node* newnode = new Node(data);newnode->_next = _tables[hashi];_tables[hashi] = newnode;//有效数据加一_n++;return make_pair(iterator(newnode, this), true);}iterator Find(const K& key){if (_tables.size() == 0){return iterator(nullptr, this);}KeyOfT kot;HashFunc hf;size_t hashi = hf(key);//size_t hashi = HashFunc()(key);hashi %= _tables.size();Node* cur = _tables[hashi];//找到指定的桶之后,顺着单链表挨个找while (cur){if (kot(cur->_data) == key){return iterator(cur, this);}cur = cur->_next;}//没找到返回空return iterator(nullptr, this);}bool Erase(const K& key){if (_tables.size() == 0){return false;}HashFunc hf;KeyOfT kot;size_t hashi = hf(key);hashi %= _tables.size();//单链表删除结点Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){//头删if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}
private://指针数组vector<Node*> _tables;size_t _n = 0;
};

主要改造的地方就是上述所注意的地方:

  • 比较时需要调用各自的仿函数
  • 调用外部传的哈希函数

还有对扩容的二次思考:

研究表明:除留余数法,最好模一个素数

  • 通过查STL官方库我们也发现,其提供了一个取素数的函数
  • 所以我们也提供了一个,直接拷贝过来
    • 这样我们在扩容时就可以每次给素数个桶
    • 在扩容时加了一条判断语句是为了防止素数值太大,过分扩容容易直接把空间(堆)干崩了

(二)哈希桶的迭代器的模拟实现

1、begin()和end()的模拟实现

  • 以第一个桶中第一个不为空的结点为整个哈希桶的开始结点
  • 以空结点为哈希桶的结束结点

2、operator*和operator->及operator!=和operator==的模拟实现 

这两组和之前实现的一模一样,大家自行理解。

3、operator ++的模拟实现

注:

  • 这里要在哈希桶的类外面访问其私有成员
  • 我们要搞一个友元类
  • 迭代器类是哈希桶类的朋友
  • 这样就可以访问了

 

思路:

  • 判断一个桶中的数据是否遍历完
  • 如果所在的桶没有遍历完,在该桶中返回下一个结点指针
  • 如果所在的桶遍历完了,进入下一个桶
  • 判断下一个桶是否为空
  • 非空返回桶中第一个节点
  • 空的话就遍历一个桶
  • 后置++和之前一眼老套路,不赘述

注意:

unordered_map和unordered_set是不支持反向迭代器的,从底层结构我们也能很好的理解(单链表找不了前驱)所以不支持实现迭代器的operator- -

最后注意一点,我们需要知道哈希桶大小,所以不仅要传结点地址,还要传一个哈希桶,这样才能知道其大小,除此,由于哈希桶改造在后面,所以我们要在前面声明一下:

(三)迭代器和改造哈希桶的总代码

#include<vector>
#include<string>
#include<iostream>
using namespace std;template<class K>
struct DefaultHash
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct DefaultHash<string>
{size_t operator()(const string& key){//BKDRsize_t hash = 0;for (auto ch : key){hash = hash * 131 + ch;}return hash;}
};namespace Bucket
{template<class T>struct HashNode{T _data;HashNode<T>* _next;HashNode(const T& data):_data(data), _next(nullptr){}};template<class K, class T, class KeyOfT, class HashFunc>class HashTable;//哈希桶的迭代器template<class K, class T, class KeyOfT, class HashFunc>class __HTIterator{typedef HashNode<T> Node;typedef __HTIterator<K, T, KeyOfT, HashFunc> Self;public:Node* _node;__HTIterator() {};//编译器的原则是向上查找(定义必须在前面,否则必须先声明)HashTable<K, T, KeyOfT, HashFunc>* _pht;__HTIterator(Node* node, HashTable<K, T, KeyOfT, HashFunc>* pht):_node(node), _pht(pht){}Self& operator++(){if (_node->_next){_node = _node->_next;}else//当前桶已经走完了,要走下一个桶{KeyOfT kot;HashFunc hf;size_t hashi = hf(kot(_node->_data)) % _pht->_tables.size();hashi++;//找下一个不为空的桶 -- 访问到了哈希表中私有的成员(友元)for (; hashi < _pht->_tables.size(); hashi++){if (_pht->_tables[hashi]){_node = _pht->_tables[hashi];break;}}//没有找到不为空的桶,用nullptr去做end标识if (hashi == _pht->_tables.size()){_node = nullptr;}}return *this;}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}bool operator!=(const Self& s) const{return _node != s._node;}bool operator==(const Self& s) const{return _node == s._node;}};//K --> 键值Key,T --> 数据//unordered_map ->HashTable<K, pair<K, V>, MapKeyOfT> _ht;//unordered_set ->HashTable<K, K, SetKeyOfT> _ht;template<class K, class T, class KeyOfT, class HashFunc>class HashTable{template<class K, class T, class KeyOfT, class HashFunc>friend class __HTIterator;typedef HashNode<T> Node;public:typedef __HTIterator<K, T, KeyOfT, HashFunc> iterator;iterator begin(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){return iterator(cur, this);}}return end();}iterator end(){return iterator(nullptr, this);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}size_t GetNextPrime(size_t prime){const int PRIMECOUNT = 28;static const size_t primeList[PRIMECOUNT] ={53,         97,         193,       389,       769,1543,       3079,       6151,      12289,     24593,49157,      98317,      196613,    393241,    786433,1572869,    3145739,    6291469,   12582917,  25165843,50331653,   100663319,  201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};//获取比prime大那一个素数size_t i = 0;for (i = 0; i < PRIMECOUNT; i++){if (primeList[i] > prime)return primeList[i];}return primeList[i];}pair<iterator, bool> Insert(const T& data){HashFunc hf;KeyOfT kot;iterator pos = Find(kot(data));if (pos != end()){return make_pair(pos, false);}//负载因子 == 1 扩容 -- 平均每个桶挂一个结点if (_tables.size() == _n){//size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;size_t newSize = GetNextPrime(_tables.size());if (newSize != _tables.size()){vector<Node*> newTable;newTable.resize(newSize, nullptr);//遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];//再对每个桶挨个遍历while (cur){Node* next = cur->_next;size_t hashi = hf(kot(cur->_data)) % newSize;//转移到新的表中cur->_next = newTable[hashi];newTable[hashi] = cur;cur = next;}//将原表置空_tables[i] = nullptr;}newTable.swap(_tables);}}size_t hashi = hf(kot(data));hashi %= _tables.size();//头插到对应的桶即可Node* newnode = new Node(data);newnode->_next = _tables[hashi];_tables[hashi] = newnode;//有效数据加一_n++;return make_pair(iterator(newnode, this), true);}iterator Find(const K& key){if (_tables.size() == 0){return iterator(nullptr, this);}KeyOfT kot;HashFunc hf;size_t hashi = hf(key);//size_t hashi = HashFunc()(key);hashi %= _tables.size();Node* cur = _tables[hashi];//找到指定的桶之后,顺着单链表挨个找while (cur){if (kot(cur->_data) == key){return iterator(cur, this);}cur = cur->_next;}//没找到返回空return iterator(nullptr, this);}bool Erase(const K& key){if (_tables.size() == 0){return false;}HashFunc hf;KeyOfT kot;size_t hashi = hf(key);hashi %= _tables.size();//单链表删除结点Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){//头删if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}prev = cur;cur = cur->_next;}return false;}private://指针数组vector<Node*> _tables;size_t _n = 0;};
}

(四)封装unordered_map和unordered_set

有了上面的哈希桶的改装,我们这里的对map和set的封装就显得很得心应手了。

unordered_map的封装:

#include "HashTable.h"namespace zc
{template<class K, class V, class HashFunc = DefaultHash<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename Bucket::HashTable<K, pair<K, V>, MapKeyOfT, HashFunc>::iterator iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _ht.Insert(kv);}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}private:Bucket::HashTable<K, pair<K, V>, MapKeyOfT, HashFunc> _ht;};void test_map(){unordered_map<string, string> dict;dict.insert(make_pair("sort", "排序"));dict.insert(make_pair("left", "左边"));dict.insert(make_pair("left", "下面"));dict["string"];dict["left"] = "上面";dict["string"] = "字符串";unordered_map<string, string>::iterator it = dict.begin();while (it != dict.end()){cout << it->first << " " << it->second << endl;++it;}cout << endl;for (auto e : dict){cout << e.first << " " << e.second << endl;}}}

这里unordered_map中的operator[ ]我们知道其原理之后,模拟实现就非常方便,直接调用插入函数,控制好参数和返回值即可。

对unordered_set的封装:

#include "HashTable.h"#include "HashTable.h"namespace zc
{template<class K, class HashFunc = DefaultHash<K>>class unordered_set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public://2.48typedef typename Bucket::HashTable<K, K, SetKeyOfT, HashFunc>::iterator iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}pair<iterator, bool> insert(const K& key){return _ht.Insert(key);}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:Bucket::HashTable<K, K, SetKeyOfT, HashFunc> _ht;};struct Date{Date(int year = 1, int month = 1, int day = 1):_year(year), _month(month), _day(day){}bool operator==(const Date& d) const{return _year == d._year&& _month == d._month&& _day == d._day;}int _year;int _month;int _day;};struct DateHash{size_t operator()(const Date& d){//return d._year + d._month + d._day;size_t hash = 0;hash += d._year;hash *= 131;hash += d._month;hash *= 1313;hash += d._day;//cout << hash << endl;return hash;}};void test_set(){unordered_set<int> s;//set<int> s;s.insert(2);s.insert(3);s.insert(1);s.insert(2);s.insert(5);s.insert(12);unordered_set<int>::iterator it = s.begin();//auto it = s.begin();while (it != s.end()){cout << *it << " ";++it;}cout << endl;for (auto e : s){cout << e << " ";}cout << endl;unordered_set<Date, DateHash> sd;sd.insert(Date(2022, 3, 4));sd.insert(Date(2022, 4, 3));}
}

最后大家可以利用代码中给的测试函数进行测试!

感谢你的阅读!

相关文章:

【C++】封装unordered_map和unordered_set(用哈希桶实现)

前言&#xff1a; 前面我们学习了unordered_map和unordered_set容器&#xff0c;比较了他们和map、set的查找效率&#xff0c;我们发现他们的效率比map、set高&#xff0c;进而我们研究他们的底层是由哈希实现。哈希是一种直接映射的方式&#xff0c;所以查找的效率很快…...

面试问题回忆

&#xff08;1&#xff09;查看端口 lsof -i:8080 / netstat lsof -i:8080&#xff1a;查看8080端口占用 lsof abc.txt&#xff1a;显示开启文件abc.txt的进程 lsof -c abc&#xff1a;显示abc进程现在打开的文件 lsof -c -p 1234&#xff1a;列出进程号为1234的进程所打开…...

更多场景、更多选择,Milvus 新消息队列 NATS 了解一下

在 Milvus 的云原生架构中&#xff0c;消息队列&#xff08;Log Broker&#xff09;可谓任重道远&#xff0c;它不仅要具备流式数据持久性、支持 TT 同步、事件通知等能力&#xff0c;还要确保工作节点从系统崩溃中恢复时增量数据的完整性。 在 Milvus 的架构中&#xff0c;一切…...

如何通过python实现一个web自动化测试框架?

要实现一个web自动化测试框架&#xff0c;可以使用Python中的Selenium库&#xff0c;它是最流行的Web应用程序测试框架之一。以下是一个基本的PythonSelenium测试框架的示例&#xff1a; 1、安装Selenium 在终端中输入以下命令&#xff0c;使用 pip 安装 Selenium&#xff1a…...

Linux —— 信号阻塞

目录 一&#xff0c;信号内核表示 sigset_t sigprocmask sigpending 二&#xff0c;捕捉信号 sigaction 三&#xff0c;可重入函数 四&#xff0c;volatile 五&#xff0c;SIGCHLD 信号常见概念 实际执行信号的处理动作&#xff0c;称为信号递达Delivery&#xff1b;信…...

【【萌新编写riscV之计算机体系结构之CPU 总二】】

萌新编写riscV之计算机体系结构之CPU 总二&#xff08;我水平太差总结不到位&#xff09; 在学习完软件是如何使用之后 我们接下来要面对的问题是 整个程序是如何运转的这一基本逻辑 中央处理器(central processing unit&#xff0c;CPU)的任务就是负责提取程序指令&#xff0…...

error:03000086:digital envelope routines::initialization error

项目背景 前端vue项目启动突然报错error:03000086:digital envelope routines::initialization error 我用的开发工具是vscode&#xff0c;node版本是v18.17.0 前端项目版本如下↓ 具体报错如下↓ 报错原因 node版本过高 解决方法 1输入命令 $env:NODE_OPTIONS"--op…...

暴涨130万粉仅用3个月,一招转型成B站热门UP主

- 导语 起号难、找不到内容方向、没流量、没粉丝等等运营困境环绕在创作者之间&#xff0c;近期&#xff0c;有黑马UP主短时间内就在B站涨粉百万&#xff0c;飞升成为热门UP主&#xff0c;以下&#xff0c;飞瓜数据&#xff08;B站版&#xff09;剖析黑马UP主运营技巧&#xf…...

【Linus】vim的使用:命令模式、底行模式、插入模式、视图模式、替换模式的常用操作介绍

目录 注意&#xff1a;以下操作前提是要确保你输入法是英文模式 一、进入和退出各个模式的方法 1.命令模式 2.底行模式 3.插入模式 4.视图模式 5.替换模式 二、在命令模式中一些常用的操作 1.移动光标 2.删除文字 3.复制 4.替换 5.撤销上一次操作 6.更改 7.跳至指…...

leetcode第362场周赛补题

8029. 与车相交的点 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a;差分数组 class Solution { public:int numberOfPoints(vector<vector<int>>& nums) {int diff[102] {}; for(auto p : nums)//差分{diff[p[0]] ;diff[p[1] 1] -- ;}int res …...

SpringMvc 之crud增删改查应用

目录 1.创建项目 2.配置文件 2.1pom.xml文件 2.2 web.xml文件 2.3 spring-context.xml 2.4 spring-mvc.xml 2.5 spring-MyBatis.xml 2.6 jdbc.properties 数据库 2.7 generatorConfig.xml 2.8 日志文件log4j2 3.后台代码 3.1 pageBean.java 3.2切面类 3.3 biz层…...

【业务功能109】微服务-springcloud-springboot-Skywalking-链路追踪-监控

Skywalking skywalking是一个apm系统&#xff0c;包含监控&#xff0c;追踪&#xff0c;并拥有故障诊断能力的 分布式系统 一、Skywalking介绍 1.什么是SkyWalking Skywalking是由国内开源爱好者吴晟开源并提交到Apache孵化器的产品&#xff0c;它同时吸收了Zipkin /Pinpoint …...

《向量数据库指南》——AI原生向量数据库Milvus Cloud 2.3架构升级

架构升级 GPU 支持 早在 Milvus 1.x 版本,我们就曾经支持过 GPU,但在 2.x 版本中由于切换成了分布式架构,同时出于对于成本方面的考虑,暂时未加入 GPU 支持。在 Milvus 2.0 发布后的一年多时间里,Milvus 社区对 GPU 的呼声越来越高,再加上 NVIDIA 工程师的大力配合——为…...

Flutter中实现交互式Webview的方法

前言&#xff1a; Flutter是一款强大的跨平台移动应用开发框架&#xff0c;而Webview则是在应用中展示Web内容的重要组件。本文将介绍如何在Flutter应用中实现交互式的Webview&#xff0c;以便为用户提供更加丰富的内容和功能。 1. 引入webview_flutter插件 要在Flutter应用中…...

【Java Web】用Redis优化登陆模块

使用Redis存储验证码 验证码需要频繁访问和封信&#xff0c;对性能要求高&#xff1b;验证码不需要永久保存&#xff0c;通常在很短时间内失效&#xff1b;分布式部署&#xff0c;存在Session共享问题&#xff1b; 使用Redis存储登陆凭证 处理每次请求时&#xff0c;都要查询用…...

华为云云耀云服务器L实例评测|docker私有仓库部署手册

【软件安装版本】【集群安装&#xff08;是&#xff09;&#xff08;否&#xff09;】 版本号 文档编写 文档审核 创建日期 修改日期 1.0 jzg jzg 2023.9.13 一. 部署规划与架构 1. 规划&#xff1a;&#xff08;集群&#xff1a;网络规划&…...

JAVA-3DES对称加解密工具(不依赖第三方库)

import javax.crypto.Cipher; import javax.crypto.spec.SecretKeySpec; import java.nio.charset.StandardCharsets; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException;public class EncryptUtil {// 密钥public static final String ENCR…...

基于Matlab卡尔曼滤波的IMU和GPS组合导航数据融合(附上源码+数据)

本文介绍了如何使用Matlab实现惯性测量单元&#xff08;IMU&#xff09;和全球定位系统&#xff08;GPS&#xff09;组合导航数据融合的卡尔曼滤波算法。通过将IMU和GPS的测量数据进行融合&#xff0c;可以提高导航系统的精度和鲁棒性。我们将详细介绍卡尔曼滤波的原理和实现步…...

net自动排课系统完整源码(适合智慧校园)

目录 1 net自动排课系统完整源码(适合智慧校园) 1.1 后台管理admin 1.1.1 菜单 1.1.2 教学计划 net自动排课系统完整源码(适合智慧校园) 后台管理admin<%@ Page Language="C#" AutoEventWireup="true" CodeBehind=&...

Matlab匿名函数教程

Matlab匿名函数是一种方便、简洁的函数定义方式&#xff0c;可以在不使用函数文件的情况下&#xff0c;直接在命令行或脚本中定义函数。本文将介绍Matlab匿名函数的基本语法和用法。 匿名函数的基本语法如下&#xff1a; function_handle (input_variables) expression其中&…...

【Vue】一文让你进入Vue的大门

Vue简介 官网 ● 英文官网 ● 中文官网 介绍与描述 Vue历史 Vue 是一套用来动态构建用户界面的渐进式JS框架 构建用户界面&#xff1a;把数据通过某种办法变成用户界面 渐进式&#xff1a;Vue可以自底向上逐层的应用&#xff0c;简单应用只需要一个轻量小巧的核心库&#xff0c…...

Linux mmap读/写触发共享文件页生命周期

概述 Linux的mm内存子系统的核心功能就要要管理各种类型的page,确保能高效分配和释放,让物理内存得以最大化使用。初识内存系统往往关注的是page的申请和管理流程,容易忽略page的释放回收流程,其实理解mm中的内存回收和释放也是最核心的机制。 Linux内核为了支持各种场景…...

linux 用户、组操作

一、创建用户并设置密码 #创建用户 duoergun useradd duoergun #设置用户 duoergun 密码 passwd duoergun二、创建组 #创建组 qingdynasty groupadd qingdynasty三、用户添加到组&#xff0c;用户从组删除 #添加用户duoergun到组qingdynasty usermod -aG qingdynasty duoer…...

MySQL报错this is incompatible withsal mode=only full group by处理办法

问题说明 报这个错误是指&#xff0c;在查询分组时展示了非分组字段。举例&#xff1a; select id , user_name from user group by user_name;上述语句查询id和user_name字段&#xff0c;其中user_name进行了分组&#xff0c;id并没有分组&#xff0c;这时候mysql就会报上述…...

Mybatis 动态语言 - mybatis-freemarker

前面我们介绍了Mybatis动态SQL的使用&#xff1b;本篇我们介绍使用mybatis- freemarker动态语言生成动态SQL。 如果您对Mybatis动态SQL不太了解&#xff0c;建议您先进行了解后再阅读本篇&#xff0c;可以参考&#xff1a; Mybatis 动态SQL – 使用if,where标签动态生成条件语…...

软件源码开发,网络中的“摄像头”:运维监控系统

在日常生活中&#xff0c;我们不管是在大街小巷&#xff0c;还是在商场大厦都可以见到一个圆形或是方形带有镜片的“小盒子”&#xff0c;这个“小盒子”就是摄像头&#xff0c;摄像头作为一个能实时录制记录它能照到范围内的视频图像的工具&#xff0c;可以在丢失物品、抓捕坏…...

ping命令

打开运行窗口 首先&#xff0c;我们需要打开运行窗口&#xff0c;可以通过按下WinR组合键打开。然后&#xff0c;在窗口中输入cmd&#xff0c;进入dos命令。 在命令行中输入ping命令 在dos命令行中&#xff0c;我们可以通过输入ping命令来检测网络连接。例如&#xff0c;我们…...

MFC:程序的托盘显示

介绍 关键技术&#xff0c;API函数Shell_NotifyIcon&#xff0c;具体查看msdn吧 实现的主要代码 #define MY_TRAY_ICON_ID (1)/ //其他代码&#xff1a;略BEGIN_MESSAGE_MAP(CTestShowTrayDlg, CDialogEx)//...ON_MESSAGE(WM_MY_TRAY_ICON, &CTestShowTrayDlg::OnMessag…...

AI绘画:StableDiffusion实操教程-斗破苍穹-云韵-婚服(附高清图下载)

大家好&#xff0c;我是小梦&#xff0c;最近一直研究AI绘画。 不久前&#xff0c;我与大家分享了StableDiffusion的全面教程&#xff1a;“AI绘画&#xff1a;Stable Diffusion 终极宝典&#xff1a;从入门到精通 ” 然而&#xff0c;仍有些读者提出&#xff0c;虽然他们已经…...

JS装饰器的介绍

装饰器的基本介绍 装饰器是一种特殊类型的声明&#xff0c;它能够被附加到类声明&#xff0c;方法&#xff0c;访问符&#xff0c;属性或参数上。 装饰器使用expression这种形式&#xff0c;expression求值后必须为一个函数&#xff0c;它会在运行时被调用&#xff0c;被装饰的…...

知名网站建设平台/重庆seo怎么样

我发现在重载下我的金字塔网络应用程序抛出py-postgresql异常,如postgresql.exceptions.ProtocolError.一些搜索显示,py-postgresql不是线程安全的连接不能同时被多个线程使用.我尝试制作某种池化机制,但我仍然可以ProtocolErrors &#x1f641;我究竟做错了什么&#xff1f;首…...

做外贸的网站有那些/成都网络营销推广公司

小编典典您也可以尝试这种方式。我已经尝试和测试过了。步骤2&#xff1a;将/libs其添加到项目的文件夹&#xff0c;然后添加到构建路径。步骤3&#xff1a;然后按以下方式使用进口寻找import org.json.JSONException;import org.json.JSONObject;import org.json.XML;样品串St…...

做外贸b2b网站/软文写作网站

概念 下载 安装 目录结构 启动 启动常遇到的问题 闪退 乱码 端口号被占用 关闭 1、直接点 X关闭 2、点击命令关闭 概念 Tomcat&#xff1a;Apache基金组织&#xff0c;中小型的JavaEE服务器&#xff0c;仅仅支持少量的JavaEE规范servlet/jsp。开源的&#xff0c;免…...

wordpress md文件/网站推广的策略

MybatisPlus入门MybatisPlus简介特性代码托管2. MP快速入门AR模式CRUDEntityWrapper 条件构造器3.1 EntityWrapper 简介3.2 EntityWrapper 使用3.3 EntityWrapper 的公用MybatisPlus 简介 Mybatis-Plus&#xff08;简称MP&#xff09;是一个 Mybatis 的增强工具&#xff0c;在…...

查看网站建设时间/怎么制作网站教程手机

原因 今天下午在抓取一个网页时&#xff0c;发现的网页字体反爬&#xff0c;这种情况一句话总结&#xff1a;即网页文本里的数字与网页上显示的字体不一致。为什么会出现这样的情况呢&#xff1f;原因是开发者在网页文本里引入了改变字体的文件。 然后可以看到&#xff0c;这…...

新乡网站建设/谷歌浏览器最新版本

上篇文章学习了第一个web程序的创建和编译过程。但是当我又从网上下载一份java web的代码进行学习时&#xff0c;遇到了一个问题&#xff1a;怎样把这个代码添加到eclipse里进行编译查看&#xff1f;经过查&#xff0c;发现File-->import->General->Existing Projects…...