时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
目录
- 时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.MATLAB实现ELM极限学习机时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测,运行主程序ELMTSF即可,其余为函数文件,无需运行;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。
程序设计
- 完整程序和数据下载方式私信博主回复:MATLAB实现ELM极限学习机时间序列预测未来。
%% 参数设置
%% 训练模型
%% 模型预测%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P - Input Matrix of Training Set (R*Q)
% T - Output Matrix of Training Set (S*Q)
% N - Number of Hidden Neurons (default = Q)
% TF - Transfer Function:
% 'sig' for Sigmoidal function (default)
% 'sin' for Sine function
% 'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW - Input Weight Matrix (N*R)
% B - Bias Matrix (N*1)
% LW - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE == 1T = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
参考资料
[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
相关文章:
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来
时序预测 | MATLAB实现ELM极限学习机时间序列预测未来 目录 时序预测 | MATLAB实现ELM极限学习机时间序列预测未来预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现ELM极限学习机时间序列预测未来; 2.运行环境Matlab2018及以上,data为数…...
【数据分享】1901-2022年我国省市县镇四级的逐年平均气温数据(免费获取/Shp/Excel格式)
气象数据在日常研究中非常常用,之前我们分享过来自国家青藏高原科学数据中心提供的1901-2022年1km分辨率逐月平均气温栅格数据,2001-2022年我国省市县镇四级的逐月平均气温数据,以及基于该栅格数据处理得到的1901-2022年1km分辨率的逐年平均气…...
【Axure高保真原型】日历日期原型模板
今天和大家分享日历日期的原型模板,包括月计划、周计划、日计划的原型案例,以及日期、时间、月份、区间选择器……具体效果可以点击下方视频观看 【原型预览及下载地址】 Axure 原型 备用地址:Untitled Document 【原型效果】 【原型效果…...
深入了解接口测试:Postman 接口测试指南
在现代软件开发生命周期中,接口测试是一个至关重要的部分。使用 Postman 这一工具,可以轻松地进行 接口测试。以下是一份简单的使用教程,帮助你快速上手。 安装 Postman 首先,你需要在电脑上安装 Postman。你可以从官网上下载并…...
【ROS】Ubuntu20.04+ROS Noetic 配置PX4-v1.12.2和Gazebo11联合仿真环境【教程】
【ROS】Ubuntu20.04ROS Noetic 配置PX4-v-v1.12.2和Gazebo11联合仿真环境【教程】 文章目录 【ROS】Ubuntu20.04ROS Noetic 配置PX4-v-v1.12.2和Gazebo11联合仿真环境【教程】0. 安装UbuntuROS1. 安装依赖2. 安装QGC地面站3. 配置PX4-v1.12.23.1 安装PX43.2 测试PX4是否成功安装…...
Java 代理模式之静态代理与动态代理
1,代理模式 代理模式给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用。通俗的来讲代理模式就是我们生活中常见的中介。 代理模式的目的: (1)通过引入代理对象的方式来间接访问目标对象,防…...
打造基于终端命令行的IDE,Termux配置Vim C++开发环境
Termux配置Vim C开发环境,打造基于终端命令行的IDE 主要利用VimCoc插件,配置C的代码提示等功能。 Termux换源 打开termux,输入termux-change-repo 找到mirrors.tuna.tsinghua.edu.cn,清华源,空格选中,回…...
【初阶C语言】操作符2---表达式求值
前言:本节重点介绍操作符的使用,如,优先级高低、类型转换等 一、逻辑操作符 前言:逻辑操作符包括逻辑与(&&)和逻辑或(||),操作对象:两个 1.逻辑与&…...
代码随想录day50|123. 买卖股票的最佳时机 III188. 买卖股票的最佳时机 IV
123. 买卖股票的最佳时机 III class Solution:def maxProfit(self, prices: List[int]) -> int:dp[[0]*5 for _ in range(len(prices))]dp[0][0]0dp[0][1]-prices[0]dp[0][2]0dp[0][3]-prices[0]dp[0][4]0for i in range(1,len(prices)):dp[i][0] dp[i-1][0]dp[i][1] max…...
Word 表格单元格无法垂直居中
Word使用 由于平时也需要用到word编写一些文档,但是咱们就是用的少,很多操作或者技巧不太清楚,很多小问题处理起来反而需要消耗很多时间,所以在这里记录平时遇到的一些问题。 表格无法垂直居中 类似于上图的情况,总之…...
python实现Flask POST Demo
数据处理逻辑 from flask import Flask, requestapp Flask(__name__)app.route(/, methods[POST]) def index():username request.form[username]password request.form[password]if username "Jhon" and password "1":return f"<html>&l…...
3-Pytorch张量的运算、形状改变、自动微分
3-Pytorch张量的运算、形状改变、自动微分 1 导入必备库2 张量的运算3 张量的算数运算4 一个元素的张量可以使用tensor.item()方法转成标量5 torch.from_numpy()和tensor.numpy()6 张量的变形7 张量的自动微分8 使用with torch.no_grad():包含上下文中使其不再跟踪计算9 使用te…...
用户权限数据转换为用户组列表(3/3) - Excel PY公式
最近Excel圈里的大事情就是微软把PY塞进了Excel单元格,可以作为公式使用,轻松用PY做数据分析。系好安全带,老司机带你玩一把。 实例需求:如下是AD用户的列表,每个用户拥有该应用程序的只读或读写权限,现在需要创建新的…...
VS2022+CMAKE+OPENCV+QT+PCL安装及环境搭建
VS2022安装: Visual Studio 2022安装教程(千字图文详解),手把手带你安装运行VS2022以及背景图设置_vs安装教程_我不是大叔丶的博客-CSDN博客 CMAKE配置: win11下配置vscodecmake_心儿痒痒的博客-CSDN博客 OPENCV配…...
JavaScript的内置类
一、认识包装类型 1.原始类型的包装类 JavaScript的原始类型并非对象类型,所以从理论上来说,它们是没有办法获取属性或者调用方法的。 但是,在开发中会看到,我们会经常这样操作: var message "hello world&q…...
6.英语的十六种时态(三面旗):主动、被动、肯定、否定、一般疑问句、特殊疑问句。
目录 一、do句型(以动词allow举例)。 (1)主动语态表格。 (2)被动语态表格。 (3)否定。 二、be句型(表格里的时态可以参考,查不到对应的资料)…...
SpringBoot连接Redis与Redisson【代码】
系列文章目录 一、SpringBoot连接MySQL数据库实例【tk.mybatis连接mysql数据库】 二、SpringBoot连接Redis与Redisson【代码】 三、SpringBoot整合WebSocket【代码】 四、SpringBoot整合ElasticEearch【代码示例】 文章目录 系列文章目录代码下载地地址一、引入依赖二、修改配…...
ardupilot开发 --- MAVSDK 篇
概述 MAVSDK是各种编程语言的库集合,用于与MAVLink系统(如无人机、相机或地面系统)接口。这些库提供了一个简单的API,用于管理一个或多个车辆,提供对车辆信息和遥测的程序访问,以及对任务、移动和其他操作…...
腾讯云AI超级底座新升级:训练效率提升幅度达到3倍
大模型推动AI进入新纪元,对计算、存储、网络、数据检索及调度容错等方面提出了更高要求。在9月7日举行的2023腾讯全球数字生态大会“AI超级底座专场”上,腾讯云介绍异构计算全新产品矩阵“AI超级底座”及其新能力。 腾讯云副总裁王亚晨在开场致辞中表示&…...
AB测试结果分析
一、假设检验 根据样本(小流量)的观测结果,拒绝或接受关于总体(全部流量)的某个假设,称为假设检验。 假设检验的基本依据是小概率事件原理(小概率事件几乎不发生),如果…...
Python模块和包:sys模块、os模块和变量函数的使用
文章目录 模块(module)引入外部模块引入部分内容包 (package)示例代码开箱即用sys模块sys.argvsys.modulessys.pathsys.platformsys.exit() os模块os.environos.system()os模块中的变量、函数和类 测试代码模块中的变量和函数的使用 总结:pyt…...
计算机软件工程毕业设计题目推荐
文章目录 0 简介1 如何选题2 最新软件工程毕设选题3 最后 0 简介 学长搜集分享最新的软件工程业专业毕设选题,难度适中,适合作为毕业设计,大家参考。 学长整理的题目标准: 相对容易工作量达标题目新颖 1 如何选题 最近非常多的…...
嵌入式学习笔记(25)串口通信的基本原理
三根通信线:Tx Rx GND (1)任何通信都要有信息作为传输载体,或者有线的或则无线的。 (2)串口通信时有线通信,是通过串口线来通信的。 (3)串口通信最少需要2根ÿ…...
c++学习第十三
1)循环引用的案例及解决办法: #include <iostream> #include <memory> using namespace std; class A;class B { public:B(){cout<<"B constructor---"<<endl;}~B(){cout<<"B deconstructor----"<<endl;}std::weak_…...
java复习-线程的同步和死锁
线程的同步和死锁 同步问题引出 当多个线程访问同一资源时,会出现不同步问题。比如当票贩子A(线程A)已经通过了“判断”,但由于网络延迟,暂未修改票数的间隔时间内,票贩子B(线程B)…...
Qt指示器设置
目录 1. 样式设置 2. 行为设置 3. 交互设置 创建一个进度指示器控件 在Qt中设置指示器(Indicator)的外观和行为通常需要操作相关部件的属性和样式表。以下是如何在Qt中设置指示器的一些常见方式: 1. 样式设置 你可以使用样式表…...
计算机网络第四节 数据链路层
一,引入数据链路层的目的 1.目的意义 数据链路层是体系结构中的第二层; 从发送端来讲,物理层可以将数据链路层交付下来的数据,装换成光,电信号发送到传输介质上了 从接收端来讲,物理层能将传输介质的光&…...
Vue.js not detected解决方法
扩展程序》管理扩展程序》详情》允许访问文件地址打开...
Window10安装PHP7.4
1. 下载PHP 7 首先需要下载PHP 7的安装包,可以从PHP官网(https://www.php.net/downloads.php)或者Windows下的PHP官网(http://windows.php.net/download/)下载Windows版本的PHP 7安装包。根据自己的系统架构ÿ…...
【C++刷题】二叉树进阶刷题
根据二叉树创建字符串 class Solution { public:/** ()的省略有两种情况* 1.左右都为空,省略* 2.左子树不为空,右子树为空,省略*/string tree2str(TreeNode* root){string s;if(root nullptr){return s;}s to_string(root->val);if(root…...
做网站600/百度指数介绍
从Eclipse Helios到Build Tools和Scala的六大成功刊物之后,JAXmag PDF杂志正进行更名,我们很荣幸推出Java Tech Journal ! 仍然可以从JAXenter.com下载免费的PDF版本,但是iPad爱好者还可以通过我们的Java技术直接将所有最新技术教…...
阿里云 oss做网站/nba最新新闻消息
1.删除用户 userdel -r student -r:删除配置文件及用户所有信息,所以要加-r 2.添加用户和用户组 useradd student 建立用户时,读取/etc/login.defs useradd -u 221 sqq 建立用户时,指定用户id useradd -g 222 sqq 222用…...
企业网站建设的劣势/丈哥seo博客
在数字化的影响下,市场竞争愈发激烈,产品和服务的研发生产也加快了节奏,各行业之间的边界也日渐模糊,跨领域、跨赛道也成为数字化转型企业的常态,就像那句话,打败你的不一定是对手,这就是数字化…...
永明投资建设有限公司网站/网络推广方案有哪些
pyecharts中的Funnel函数可以绘制漏斗图,自动根据数据大小生成由大到小自上而下排列的一个漏斗样的图形。1、导入Funnel模块。from pyecharts import Funnel2、初始化图形参数。funnel Funnel("漏斗图", width600, height400, title_poscenter)3、输入数…...
赣州专业企业网站建设/淘宝指数官网的网址
保持多年高速增长的企鹅帝国似乎放慢了脚步。 3月14日,腾讯发布其2011年财报:总营收约285亿元,同比增长45%。这个数字从绝对值上看并不低,但与2010财年高达58%的同比增长已经出现下降,与其2008财…...