时间序列场景下多种数据填充算法实践与对比分析
在时间序列建模任务中,模型往往对于缺失数据是比较敏感的,大量的缺失数据甚至会导致训练出来的模型完全不可用,在我前面的博文中也有写到过数据填充相关的内容,感兴趣的话可以自行移步阅读即可:
《python 基于滑动平均思想实现缺失数据填充》
本文的核心目的主要是因为实际项目中有时间序列预测建模的需求,这里需要做好前期数据的准备提取和处理工作,在这里考虑基于一些常见的处理方法整合实现各种数据填充处理算法,集成应用于项目中。
实例数据如下所示:
01/01/2011,12,6.97,98,40.5,6.36,2.28,0.09,0.17
01/02/2011,11.7,6.97,98,40.8,6.4,2.06,0.09,0.21
01/03/2011,11.4,6.97,93,53.4,6.64,1.81,0.08,0.15
01/04/2011,9.9,6.96,95,33.5,6.39,2.38,0.09,0.2
01/05/2011,9.2,7.01,99,32.2,6.5,2.23,0.08,0.22
01/06/2011,9.9,6.97,98,32.9,6.74,1.74,0.07,0.13
01/07/2011,9.2,6.93,102,22.4,7.02,1.69,0.09,0.19
01/08/2011,9.6,6.97,104,35.1,7.26,1.79,0.07,0.27
01/09/2011,11.9,6.92,103,25.5,6.13,1.61,0.08,0.18
01/10/2011,12.3,6.96,102,30.9,6.66,1.9,0.06,0.08
01/11/2011,10.7,6.99,97,36.1,7.15,3.73,0.09,0.12
01/12/2011,9.3,6.95,97,34.5,7.66,2.33,0.08,0.13
01/13/2011,9.2,6.98,95,42,8.01,3.05,0.1,0.14
01/14/2011,10.5,6.95,98,30.9,7.01,3.05,0.07,0.13
01/15/2011,11.2,6.94,98,27.2,6.61,3.41,0.08,0.13
01/16/2011,9.1,6.93,93,39.6,7.51,3.4,0.12,0.23
01/17/2011,9.1,6.92,96,31.9,7.07,2.97,0.08,0.22
01/18/2011,10,6.93,95,37.6,7.55,2.64,0.08,0.11
01/19/2011,10.8,6.9,99,33.5,7.4,2.96,0.09,0.13
01/20/2011,10.6,6.86,100,31.8,7,3,0.08,0.12
01/21/2011,9.2,6.8,99,32.6,7.32,2.92,0.07,0.07
01/22/2011,9.4,6.76,99,35.8,7.44,3.62,0.12,0.14
01/23/2011,9.9,6.7,97,35.6,7.19,3.35,0.09,0.15
01/24/2011,10,6.66,99,35.9,7.16,3.18,0.07,0.08
01/25/2011,9.7,6.61,98,34.8,7.31,3.27,0.07,0.12
01/26/2011,9.5,6.54,101,33.5,7.08,3.56,0.08,0.21
01/27/2011,9.9,6.51,102,34.8,6.55,3.54,0.08,0.15
01/28/2011,10.4,6.47,98,20.5,6.46,3.38,0.07,0.09
01/29/2011,9.3,6.52,101,29.8,7.39,3.74,0.08,0.13
01/30/2011,8.2,6.53,102,33.8,7.83,3.51,0.08,0.13
01/31/2011,8.7,6.54,101,27.8,7.65,3.3,0.07,0.15
02/01/2011,9.8,6.58,102,31.4,7.02,3.25,0.07,0.11
02/02/2011,9.8,6.63,102,32.5,7.37,3.93,0.09,0.19
02/03/2011,9.9,6.69,102,32,7.27,3.8,0.08,0.14
02/04/2011,11.9,6.72,99,26.5,6.61,3.53,0.07,0.09
02/05/2011,13.7,6.75,97,24.9,6.31,3.37,0.07,0.09
02/06/2011,15.2,6.77,97,26.2,6.04,4.03,0.09,0.14
02/07/2011,16.5,6.76,92,23.2,5.82,3.61,0.07,0.1
02/08/2011,18.3,6.7,89,21.4,4.93,3.93,0.09,0.22
02/09/2011,18.5,6.72,84,17.5,5.33,3.33,0.07,0.1
02/10/2011,18,6.7,85,21.4,5.31,3.71,0.07,0.13
02/11/2011,15,6.72,88,22.1,6.08,3.49,0.06,0.06
02/12/2011,12.8,6.66,84,23.9,7.15,3.52,0.07,0.13
02/13/2011,12.2,6.61,81,26.9,7.39,3.5,0.07,0.11
02/14/2011,10.7,6.57,83,23.8,7.62,3.57,0.08,0.14
02/15/2011,9.5,6.53,84,27.1,7.88,3.53,0.08,0.12
02/16/2011,9.1,6.51,87,35.2,8.35,3.64,0.09,0.17
02/17/2011,9.8,6.46,94,31,7.87,3.38,0.08,0.15
02/18/2011,10.4,6.45,94,35.4,8.13,3.63,0.1,0.22
02/19/2011,10.6,6.39,86,33.5,7.97,3.5,0.1,0.2
02/20/2011,11.3,6.38,88,37,8.41,3.31,0.08,0.11
02/21/2011,12.5,6.37,89,32.1,7.24,3.34,0.08,0.11
02/22/2011,13.2,6.39,87,37.5,8.09,3.93,0.12,0.12
02/23/2011,14.6,6.4,89,25.6,6.87,3.71,0.08,0.14
02/24/2011,15,6.38,87,19.2,6.19,3.6,0.07,0.12
02/25/2011,16.2,6.36,86,19.5,5.57,3.54,0.07,0.13
02/26/2011,16.4,5.61,79,16.8,4.19,3.68,0.07,0.17
02/27/2011,8.9,2.54,29,15,2.42,3.29,0.07,0.09
02/28/2011,23,6.29,86,26.4,5.45,3.85,0.09,0.12
03/01/2011,22.4,6.43,92,27.4,5.71,1.78,0.07,0.13
03/02/2011,17.5,6.33,89,30.2,6.68,2.2,0.07,0.11
03/03/2011,15.4,6.36,91,29.8,7.01,1.97,0.07,0.07
03/04/2011,13.6,6.31,89,29,7.48,1.81,0.07,0.08
03/05/2011,13.2,6.3,92,25.9,6.89,2.54,0.07,0.1
03/06/2011,13.9,6.3,99,29.2,7.16,1.83,0.06,0.08
03/07/2011,14.4,6.27,98,26,7.05,1.62,0.05,0.07
03/08/2011,14.2,6.25,100,30.1,7.21,1.47,0.06,
03/09/2011,14.6,6.2,102,29.5,7.02,1.46,0.06,
03/10/2011,15.2,6.16,105,24.1,6.69,1.57,0.05,0.28
03/11/2011,15.2,6.13,107,32.5,6.78,1.74,0.07,0.43
03/12/2011,14.4,6.1,105,28.1,7.24,1.64,0.06,0.09
03/13/2011,15.2,6.05,102,27,6.97,1.73,0.06,0.09
03/14/2011,18,6,102,26.5,6.34,1.92,0.06,0.1
03/15/2011,19.5,5.99,99,26.4,6.14,2.17,0.06,0.1
03/16/2011,15.1,6.15,111,32.5,7.01,2.83,0.08,0.13
03/17/2011,14.6,6.33,118,33.2,7.25,2.44,0.07,0.06
03/18/2011,14.6,6.38,122,30.1,7.34,2.88,0.08,0.11
03/19/2011,13.5,6.35,124,32.4,7.66,2.69,0.09,
03/20/2011,15.6,6.26,108,53.9,6.79,2.9,0.14,
03/21/2011,20.8,6.17,95,44.2,5.2,2.31,0.1,
03/22/2011,19.9,6.23,99,47.8,6.87,3.09,0.12,0.11
03/23/2011,15.3,6.31,112,48.2,8.74,2.47,0.11,0.07
03/24/2011,14.6,6.22,114,43.5,8.95,2.68,0.13,0.13
03/25/2011,15.8,6.2,113,32.9,8.6,2.63,0.12,0.08
03/26/2011,15.7,6.16,119,35.6,8.97,2.51,0.1,0.06
03/27/2011,12.7,5.35,108,31.8,8.95,2.21,0.09,0.05
03/28/2011,14.2,6.05,126,25.7,6.67,2.23,0.06,
03/29/2011,,,,,,,,
03/30/2011,,,,,,,,
03/31/2011,,,,,,,,
04/01/2011,0.25,0.25,0.25,0.25,0.25,,0.08,0.51
04/02/2011,7.8,6.36,39,8.4,3.83,0.25,0.03,0.19
04/03/2011,17.2,7.56,147,77.8,8.7,1.13,0.08,0.2
04/04/2011,11.9,7.29,148,56.5,6.06,1.99,0.07,0.28
04/05/2011,14.9,7.12,181,96.6,6.15,2.38,0.08,0.44
04/06/2011,15.5,7.12,189,75.3,6.07,2.43,0.08,0.45
04/07/2011,16.3,7.12,199,13.8,5.53,2.46,0.07,0.38
04/08/2011,16.4,7.19,192,124.7,4.61,2.37,0.08,0.17
04/09/2011,16.3,7.1,198,286.6,5.19,2.62,0.07,0.17
可以看到:数据集序列中有明显的缺失值现象,如下所示:
首先来看最基础的填充处理方式,就是零值填充,核心实现如下所示:
SI = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)
result = SI.fit_transform(data)
这种方式当然也是最不推荐的方式。
接下来来看均值填充方法:
SI = SimpleImputer(missing_values=np.nan, strategy='mean')
result = SI.fit_transform(data)
上面两种填充处理都是基于sklearn模块内置的SimpleImputer方法实现的,该方法的参数详情如下所示:
class sklearn.impute.SimpleImputer(*, missing_values=nan, strategy=‘mean’, fill_value=None, verbose=0, copy=True, add_indicator=False)
参数含义
missing_values:int, float, str, (默认)np.nan或是None, 即缺失值是什么。
strategy:空值填充的策略,共四种选择(默认)mean、median、most_frequent、constant。mean表示该列的缺失值由该列的均值填充。median为中位数,most_frequent为众数。constant表示将空值填充为自定义的值,但这个自定义的值要通过fill_value来定义。
fill_value:str或数值,默认为Zone。当strategy == "constant"时,fill_value被用来替换所有出现的缺失值(missing_values)。fill_value为Zone,当处理的是数值数据时,缺失值(missing_values)会替换为0,对于字符串或对象数据类型则替换为"missing_value" 这一字符串。
verbose:int,(默认)0,控制imputer的冗长。
copy:boolean,(默认)True,表示对数据的副本进行处理,False对数据原地修改。
add_indicator:boolean,(默认)False,True则会在数据后面加入n列由0和1构成的同样大小的数据,0表示所在位置非缺失值,1表示所在位置为缺失值。
仿照我上面的方式还可以构建基于中位数、众数和自定义常量这几种数据填充方式,如下所示:
#中位数
SI = SimpleImputer(missing_values=np.nan, strategy='median')
result = SI.fit_transform(data)#众数
SI = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
result = SI.fit_transform(data)#自定义常量值
SI = SimpleImputer(missing_values=np.nan, strategy='constant')
result = SI.fit_transform(data)
除了这些基于sklearn内置统计方法构建的填充方式之外,还可以基于模型来进行填充,本质的思想就是优先选取最易填充的维度进行填充,之后循环处理即可,这里给出基础的代码实现:
sortInds = np.argsort(X.isnull().sum(axis=0)).values
for i in sortInds:df = Xfillc = df.iloc[:,i]df = df.iloc[:,df.columns != i]dfs =SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0).fit_transform(df)Ytrain = fillc[fillc.notnull()] Ytest = fillc[fillc.isnull()] Xtrain = dfs[Ytrain.index,:] Xtest = dfs[Ytest.index,:]model.fit(Xtrain, Ytrain)Ypredict = model.predict(Xtest)X.loc[X.iloc[:,i].isnull(),i] = Ypredict
接下来就是滑动平均的数据填充思想了,这部分建议可以看前面的博文实现,更加具体详细,这里就不再展开了,滑动平均的数据填充策略主要包括:平均法和加权平均法,唯一的区别就是在移动加权的处理方法加入了权重处理。
接下来对比一下差异:
#平均
one_index_list=list(range(i-tmp,i))+list(range(i+1,i+tmp+1))
one_value=[data[h] for h in one_index_list]
one_value=[O for O in one_value if not math.isnan(O)]
one_value=[new_col_list[h] for h in one_index_list]
one_value=[O for O in one_value if not math.isnan(O)]
new_col_list[i]=sum(one_value)/len(one_value)#加权
one_index_list=list(range(i-tmp,i))+list(range(i+1,i+tmp+1))
one_value=[one_col_list[h] for h in one_index_list]
weight_list=[abs(1/(B-i)) for B in range(i-tmp,i) if not math.isnan(one_col_list[B])]+[abs(1/(L-i)) for L in range(i+1,i+tmp) if not math.isnan(one_col_list[L])]
one_w=weightGenerate(weight_list)
one_weight_value=[one_value[j]*one_w[j] for j in range(len(one_w)) if not math.isnan(one_value[j])]
new_col_list[i]=sum(one_weight_value)
最后一种就是卡尔曼滤波的数据填充方式,这里我主要是基于开源的模块pykalman实现的,很简单,网上也有很多的实例,感兴趣的话可以自行研究下即可。
完成了不同类型数据填充方法的开发后, 我们以实际的数据为例,来对比下填充后的效果:
我们的数据集中共有8个维度的特征数据,依次使用上述不同的数据填充算法来对原始数据集进行填充处理,可以看到不同填充算法的差异还是比较明显的。
数据量比较多,看得可能不够真切,这里对数据集抽稀100倍,看下对比可视化效果,如下所示:
这里数据就变得非常地稀疏了,接下来我们对其加密10倍,再来看下填充算法的对比可视化效果,如下所示:
相关文章:
时间序列场景下多种数据填充算法实践与对比分析
在时间序列建模任务中,模型往往对于缺失数据是比较敏感的,大量的缺失数据甚至会导致训练出来的模型完全不可用,在我前面的博文中也有写到过数据填充相关的内容,感兴趣的话可以自行移步阅读即可: 《python 基于滑动平均…...
Mysql开启binlog
本案例基于mysql5.7.16实验 1、在linux中进入mysql查询binlog是否打开,执行命令如下: mysql -u root -p 2、查询binlog是否开启命令如下,如果log_bin为OFF则证明mysql的binlog没有打开 show variables like %log_bin%; 3、退出mysql终端&…...
【Java Web】HTML 标签 总结
目录 1.HTML 2.标签 1. head 标签 1.图标 2.样式居中 2. body 标签 1.注释 : 2.加载图片 3.加载视频 效果 4.区域 效果 5.上下跳转,页面跳转 效果 6.表格 效果 7.有序列表,无序列表 效果 8.登录 效果 9.按钮 10.多选框…...
前端面试的话术集锦第 4 篇:进阶篇下
这是记录前端面试的话术集锦第四篇博文——进阶篇下,我会不断更新该博文。❗❗❗ 1. 浏览器Eventloop和Node中的有什么区别 众所周知JS是⻔⾮阻塞单线程语⾔,因为在最初JS就是为了和浏览器交互⽽诞⽣的。 如果JS是⻔多线程的语⾔话,我们在多个线程中处理DOM就可能会发⽣问…...
mmap详解
想写一篇文章,详细的介绍一下mmap,主要是原理、用法、mmap泄露来进行介绍。说到mmap,首先得从堆空间说起。 申请堆空间 其实,不管是 32 位系统还是 64 位系统,内核都会维护一个变量 brk,指向堆的顶部&…...
项目02—基于keepalived+mysqlrouter+gtid半同步复制的MySQL集群
文章目录 一.项目介绍1.拓扑图2.详细介绍 二.前期准备1.项目环境2.IP划分 三. 项目步骤1.ansible部署软件环境1.1 安装ansible环境1.2 建立免密通道1.3 ansible批量部署软件1.4 统一5台mysql服务器的数据 2.配置基于GTID的半同步主从复制2.1 在master上安装配置半同步的插件,再…...
【EI征稿】第二届机械电子工程与人工智能国际学术会议(MEAI 2023)
第二届机械电子工程与人工智能国际学术会议(MEAI 2023) The 2nd International Conference on Mechatronic Engineering and Artificial Intelligence 2023年第二届机械电子工程与人工智能国际学术会议(MEAI 2023)计划将于2023年…...
ros2 学习launch文件组织工程 yaml配置文件
简单范例 功能描述 使用launch文件,统一管理工程,实现img转点云,发送到img_pt的topic,然后用reg_pcl节点进行subscribe,进行点云配准处理,输出融合后的点云到map_pt的topic。最后由rviz2进行点云展示。 …...
奇舞周刊第 505 期:实践指南-前端性能提升 270%!
记得点击文章末尾的“ 阅读原文 ”查看哟~ 下面先一起看下本期周刊 摘要 吧~ 奇舞推荐 ■ ■ ■ 实践指南-前端性能提升 270% 当我们疲于开发一个接一个的需求时,很容易忘记去关注网站的性能,到了某一个节点,猛地发现,随着越来越多…...
【C++】泛型编程 | 函数模板 | 类模板
一、泛型编程 泛型编程是啥? 编写一种一般化的、可通用的算法出来,是代码复用的一种手段。 类似写一个模板出来,不同的情况,我们都可以往这个模板上去套。 举个例子: void Swap(int& a, int& b) {int tmp …...
web前端——简单的网页布局案列
✨博主:命运之光 🌸专栏:Python星辰秘典 🐳专栏:web开发(简单好用又好看) ❤️专栏:Java经典程序设计 ☀️博主的其他文章:点击进入博主的主页 目录 问题背景 解决样例 …...
线程安全问题(3)--- wait(),notify()
前言 在多线程的环境下,我们常常要协调多个线程之间的执行顺序,而为了实现这一点,Java提供了一些方法来帮助我们完成这一点。 一,wait() 作用: 使当前线程进入等待状态 释放当前的锁 (即该方法必须和 synchrnized 关键…...
【Android知识笔记】进程通信(一)
一、Android Framework 用到了哪些 IPC 方式 Linux 的 IPC 方式有: 管道Socket共享内存信号信号量消息队列管道通信 管道是基于pipefs文件系统实现的,也就是多个进程通过对同一个文件进行读写来实现进程间通信。半双工,单向的,通过 pipe(fds) 系统函数调用可得到一对文件描…...
存储空间压缩6倍 ,多点DMALL零售SaaS场景降本实践
🧑💼 作者简介 冯光普:多点 DMALL 数据库团队负责人,负责数据库稳定性建设与 DB PaaS 平台建设,在多活数据库架构、数据同步方案等方面拥有丰富经验。 杨家鑫:多点高级 DBA,擅长故障分析与性能…...
BGP路由属性
任何一条BGP路由都拥有多个路径属性(Path Attributes),当路由器通告BGP路由给它的对等体时,该路由将会携带多个路径属性,这些属性描述了BGP路由的各项特征,同时在某些场景下也会影响BGP路由优选的决策。 一…...
Java面试常用函数
1. charAt() 方法用于返回字符串指定索引处的字符。索引范围为从 0 到 length() - 1。 map.getOrDefault(num, 0) :如果map存在num这个key,则返回num对应的value,否则返回0. Arrays.sort(nums); 数组排序 Arrays.asList("a","b",&q…...
linux编译curl库(支持https)
openssl下载和编译 https://www.openssl.org/source/old/ 解压 tar -xvf openssl-3.0.1.tar.gz cd openssl-3.0.1/配置 ./config如果是编译静态库加入 -fPIC no-shared 如果指定安装路径,使用 --prefix=/usr/local/openssl/选项指定特定目录 编译和安装 make sodu make i…...
Ei Scopus检索 | 2024年第三届能源与环境工程国际会议(CFEEE 2024)
会议简介 Brief Introduction 2024年第三届能源与环境工程国际会议(CFEEE 2024) 会议时间:2024年9月1日-3日 召开地点:新西兰奥克兰 大会官网:https://www.cfeee.org/ 2024年第三届能源与环境工程国际会议(CFEEE 2024) 将于2024年12月12日至1…...
thinkphp6(tp6)创建定时任务
使用 thinkphp6 框架中提供的命令行形式实现定时任务 一、创建一个自定义命令类文件 php think make:command Hello 会生成一个 app\command\Hello.php 命令行指令类,我们修改内容如下: <?php declare (strict_types1);namespace app\command;use …...
【学习笔记】C++ 中 static 关键字的作用
目录 前言static 作用在变量上static 作用在全局变量上static 作用在局部变量上static 作用在成员变量上 static 作用在函数上static 作用在函数上static 作用在成员函数上 前言 在 C/C 中,关键字 static 在不同的应用场景下,有不同的作用,这…...
攻防世界-web-file_include
1. 题目描述 打开界面,如下代码: 代码很简单,从参数中获取到filename然后include这个filename 2. 思路分析 2.1 首先参考常见做法,将参数设置为php://filter/readconvert.base64-encode/resourceflag.php,看是否有…...
C语言的函数指针、指针函数, 函数数组
函数指针 是指向函数的指针,它允许您在程序运行时动态选择要调用的函数。函数指针可以像普通变量一样传递、存储和使用,这使得它们在许多编程场景中非常有用,如回调函数、函数表、插件架构等。 以下是一个简单的例子来说明函数指针的概念&a…...
笔记本开启WiFi
笔记本开启WiFi 为了节省流量:笔记本开启WiFi 条件 支持热点的电脑;我的是华硕飞行堡垒7。 注意事项 笔记本连接公司网络,公司网络通常都在监管下的,手机连接wifi后,刷抖音、购物网站,公司后台会捕获你…...
力扣第37天----第322题、第279题
力扣第37天----第322题、第279题 文章目录 力扣第37天----第322题、第279题一、第322题--零钱兑换二、第279题--组合总和 Ⅳ 一、第322题–零钱兑换 整体思路,跟前面的几道完全背包差不多,就不具体解释了。有一些细节要注意,见代码注释。…...
【ArcGIS Pro二次开发】(67):处理面要素空洞
这个一个简单的小功能。 有些面要素可能会存在空洞,这个工具的目的就是获取面要素的空洞,或者去除空洞获取要素的边界。 这个功能其实在之前做拓扑功能的时候就已经有了,这次只是单独把它提取出来。因为有时候会单独用到这个功能。 一、要实…...
FPGA-结合协议时序实现UART收发器(一):UART协议、架构规划、框图
FPGA-结合协议时序实现UART收发器(一):UART协议、架构规划、框图 记录FPGA的UART学习笔记,以及一些细节处理,主要参考奇哥fpga学习资料。 本次UART主要采用计数器方法实现,实现uart的稳定性发送和接收功能…...
web请求cookie中expires总结
用意 cookie 有失效日期 "expires",如果还没有过失效期,即使重新启动电脑,cookie 仍然不会丢失 注意:如果没有指定 expires 值,那么在关闭浏览器时,cookie 即失效。 设置 如果cookie存储时间大…...
如何学习Java核心知识
Java作为一门广泛应用于软件开发的编程语言,拥有着强大的生态系统和丰富的资源,是值得投入时间和精力去学习的。以下是一些建议,帮助你系统地学习Java核心知识。 1. 学习Java语言基础: 学习Java语言基础是学习Java的第一步&…...
【AWS】如何用SSH连接aws上的EC2实例(虚拟机)?
目录 0.环境 1.连接结果示例 2.SSH连接思路 3.具体步骤 1)安装并运行ssh服务 2)启动ssh服务 3)在AWS上找到正在运行的EC2实例,并且根据提供的ssh连接语句进行连接 0.环境 windows 11 64位 前提: 有aws账户&…...
数据结构——看完这篇保证你学会队列
数据结构——队列 一、队列的概念二、队列的实现方式三、队列所需要的接口四、接口的详细实现4.1初始化4.2销毁4.3入队4.5出队4.6获取队头元素4.7获取队尾元素4.8获取队列元素个数4.9判空 五、完整代码5.1Queue.h5.2Queue.c5.3test.c 一、队列的概念 队列:只允许在…...
2023二级建造师报名官网入口/名优网站关键词优化
vp的时候没码出来。。 我们用set去维护, 每一块区域, 每块区域内的元素与下一个元素的差值刚好为ki,每次加值的时候我们暴力合并, 可以发现我们最多合并O(n)次。 然后写个线段树就没了。 #include<bits/stdc.h> #define LL …...
成都个人学做网站/二十条优化疫情措施
今早8点,《梦幻西游》手游再次迎来了大维护。那么这次维护都有哪些新的玩法加入,有哪些功能的优化呢?下面就来回顾下维护的相关内容吧!以下内容在部分服务器放出(客户端升级至1.17.0版):1、帮派竞赛玩法继续在再续前缘、花样年华、梦回唐朝、…...
网站开发 为什么要用缩略图/东莞网络推广平台
①while循环的表达式是循环进行的条件,用作循环条件的表达式中一般至少包括一个能够改变表达式的变量,这个变量称为循环变量②当表达式的值为真(非零)(非空)时,执行循环体;为假(0)时,则循环结束不为0,不为f…...
网站友情链接怎么弄/太原seo快速排名
FORM Bulider开发过程中,有些界面在输入时,经常要判断输入的数据是否有重复。本文介绍一种在多列多行校验数据的方法。如下,完成界面上所有输入的工单不能重复的功能。分析:因为 FORM Bulider的许多触发器不允许使用go_record()、…...
长沙专业网站制作设计/网络营销专员的就业前景
信道编码作用就是针对无线传输环境下复杂多变的信道条件,采取的一种提高发送数据正确率的典型方法。比如对于传输的信息比特序列(例如x[1 1 0 1 0 1 1 0]是一个长度为8的序列),如果直接经过无线信道,由于各种干扰的存在,接收到的序…...
网站建设需要的文案/营销策略4p分析怎么写
前段时间搞无状态的TCP conntrack,发现其中一个静态数组表示的TCP状态机很是不错,希望这种思想以后可以用在实际的工作中,直说吧,就是这个状态机数组:static const u8 tcp_conntracks[2][6][TCP_CONNTRACK_MAX] {{ /*…...