当前位置: 首页 > news >正文

第五次作业:修改redis的配置文件使得windows的图形界面客户端可以连接redis服务器

1. 安装 Redis 依赖

Redis 是基于 C语言编写的,因此首先需要安装 Redis 所需要的 gcc 依赖:

yum install -y gcc tcl

2、上传安装文件

将下载好的 redis-6.2.7.tar.gz 安装包上传到虚拟机的任意目录(一般推荐上传到 /usr/local/src目录)。

3、解压安装文件

上传后执行如下命令来进行解压。

4、进入安装目录

解压完成后,执行如下命令进入解压目录。

5、安装redis

yum install redis -y
6、修改redis配置文件中的bind,添加bind 0.0.0.0

7、重启redis服务,并关闭防火墙

systemctl start  redis
systemctl disable firewalld.service
systemclt stop firewalld.service

8、使用可视化工具连接redis数据库 

相关文章:

第五次作业:修改redis的配置文件使得windows的图形界面客户端可以连接redis服务器

1. 安装 Redis 依赖 Redis 是基于 C语言编写的,因此首先需要安装 Redis 所需要的 gcc 依赖: yum install -y gcc tcl 2、上传安装文件 将下载好的 redis-6.2.7.tar.gz 安装包上传到虚拟机的任意目录(一般推荐上传到 /usr/local/src目录&am…...

【11】FreeRTOS的延时函数

目录1.延时函数-介绍2.相对延时函数-解析2.1函数prvAddCurrentTaskToDelayedList-解析2.3滴答定时器中断服务函数xPortSysTickHandler()-解析2.4函数taskSWITCH_DELAYED_LISTS() -解析3.延时函数-实验4.总结1.延时函数-介绍 函数描述vTaskDelay()相对延时xTaskDelayUntil()绝对…...

Vue页面组成及常用属性

一、Vue页面组成 目前的项目中,Vue页面都是采用组件套娃的形式,由一个一个的组件拼接而成整个页面。一个组件就是一个.vue文件。组件通常由template和script两部分组成: template部分:页面展示的具体元素内容,比如文字…...

j6-IO流泛型集合多线程注解反射Socket

IO流 1 JDK API的使用 2 io简介 输入流用来读取in 输出流用来写出Out 在Java中,根据处理的数据单位不同,分为字节流和字符流 继承结构 java.io包: File 字节流:针对二进制文件 InputStream --FileInputStream --BufferedInputStre…...

创业能否成功?这几个因素很重要!

创业能否成功?这几个因素很重要! 2023-02-22 19:06:53 大家好,我是你们熟悉而又陌生的好朋友梦龙,一个创业期的年轻人 上周末跟朋友一起钓鱼,他跟吐槽现在生意越来越难做。他是我身边可以说是创业很成功的例子&#…...

Bmp图片格式介绍

Bmp图片格式介绍 介绍 BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。随着Windows操作系统的流行与丰富的Windows应用程序的开发,BMP位图格式理所当然地被…...

Day4 leetcode

Day4 啊啊啊啊,什么玩意,第一次因为测评没过,约好的面试取消了,好尴尬呀,还有一家厦门的C/C电话面,是一家我还挺喜欢的公司,面的稀烂,只能安慰自己我现在手上至少有一个offer 有效括…...

Java设计模式-原型模式

1、定义 原型模式是一种创建型模式,用于创建重复的对象,并且保证性能。原型模式创建的对象是由原型对象自身创建的,是原型对象的一个克隆,和原型对象具有相同的结构和相同的值。 2、适用场景 创建对象时我们不仅仅需要创建一个新…...

2023年度最新且最详细Ubuntu的安装教程

目录 准备ISO镜像 1.去官网下载镜像,或者找有镜像源的网站下载 阿里云镜像站 2. 如果服务器是打算直接把底层系统安装为Ubuntu的话还需制作系统U盘 安装 1.新建虚拟机调整基础配置 2.打开电源,进入安装界面(到这一步就跟u盘安装步骤一致…...

unix高级编程-fork之后父子进程共享文件

~/.bash_profile:每个用户都可使用该文件输入专用于自己使用的shell信息,当用户登录时,该文件仅仅执行一次!默认情况下,他设置一些环境变量,执行用户的.bashrc文件. 这里我看到的是centos的操作,但我用的是debian系的ubuntu,百度了一下发现debian的在这里…...

vue+echarts:柱状图横向展示和竖向展示

第021个点击查看专栏目录本示例是显示柱状图,分别是横向展示和纵向展示。关键是X轴和Y轴的参数互换。 文章目录横向示例效果横向示例源代码(共81行)纵向示例效果纵向示例源代码(共81行)相关资料参考专栏介绍横向示例效…...

SealOS 一键安装 K8S

环境 # 查看系统发行版 $ cat /etc/os-release NAME"CentOS Linux" VERSION"7 (Core)" ID"centos" ID_LIKE"rhel fedora" VERSION_ID"7" PRETTY_NAME"CentOS Linux 7 (Core)" ANSI_COLOR"0;31" CPE_NA…...

python网络编程详解

最近在看《UNIX网络编程 卷1》和《FREEBSD操作系统设计与实现》这两本书,我重点关注了TCP协议相关的内容,结合自己后台开发的经验,写下这篇文章,一方面是为了帮助有需要的人,更重要的是方便自己整理思路,加…...

ICRA 2023 | 首个联合暗光增强和深度估计的自监督方法STEPS

原文链接:https://www.techbeat.net/article-info?id4629 作者:郑宇鹏 本文中,我们提出了STEPS,第一个自监督框架来联合学习图像增强和夜间深度估计的方法。它可以同时训练图像增强网络和深度估计网络,并利用了图像增…...

基于react+nodejs+mysql开发用户中心,用于项管理加入的项目的用户认证

基于reactnodejsmysql开发用户中心,用于项管理加入的项目的用户认证用户中心功能介绍页面截图后端采用架构user表projects表project_user表仓库地址用户中心功能介绍 用户中心项目,用于统一管理用户信息、登录、注册、鉴权等 功能如下: 用…...

mapreduce与yarn

文章目录一、MapReduce1.1、MapReduce思想1.2、MapReduce实例进程1.3、MapReduce阶段组成1.4、MapReduce数据类型1.5、MapReduce关键类1.6、MapReduce执行流程1.6.1、Map阶段执行流程1.6.2、Map的shuffle阶段执行流程1.6.3、Reduce阶段执行流程1.7、MapReduce实例WordCount二、…...

鲲鹏云服务器上使用 traceroute 命令跟踪路由

traceroute 命令跟踪路由 它由遍布全球的几万局域网和数百万台计算机组成,并通过用于异构网络的TCP/IP协议进行网间通信。互联网中,信息的传送是通过网中许多段的传输介质和设备(路由器,交换机,服务器,网关…...

代码随想录算法训练营第47天 || 198.打家劫舍 || 213.打家劫舍II || 337.打家劫舍III

代码随想录算法训练营第47天 || 198.打家劫舍 || 213.打家劫舍II || 337.打家劫舍III 198.打家劫舍 题目介绍 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&…...

JVM调优方式

对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数。 1.Full GC 会对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个堆进行回收,所以比较慢,因此应该尽可能减少Full GC的次数。 2.导致Full GC的原因 1)年老…...

机器学习模型监控的 9 个技巧

机器学习 (ML) 模型是非常敏感的软件;它们的成功使用需要进行仔细监控以确保它们可以正常工作。当使用所述模型的输出自动做出业务决策时尤其如此。这意味着有缺陷的模型通常会对终端客户的体验产生真正的影响。因此,监控输入数据(和输出&…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...