手写实现LRN局部响应归一化算子
1、重写算子的需求
芯片推理过程中遇到很多算子计算结果不对的情况,原因是封装的算子会在某些特殊情况下计算超限,比如输入shape特别大或者数值特别大时,LRN算子计算会出现NAN值,所以需要重写算子。先对输入数据做一个预处理,计算后再在合适的地方转换回去。
2、lrn算子的原理
LRN全称是local response normalization,局部响应归一化,想了解原理的点这个AlexNet原论文。
官方API伪代码如下:
sqr_sum[a, b, c, d] = sum(input[a,b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias +alpha * sqr_sum) ** beta
在alexnet的原论文中,输入为 [batch_size, 224, 224, 96],这里224×224是图片的大小,经过第一次卷积再经过ReLU,就是LRN函数的输入。
注意上面API说明里的sum函数,意思就是,可能解释起来比较拗口,针对batch里每一个图的后3维向量,[224, 224, d - depth_radius : d + depth_radius + 1],对它按照半径 depth_radius求每个图里的每个像素的平方,再把这2× depth_radius+1个平方过后的图片加起来,就得到了这个batch的sqr_sum。
3、手写实现lrn算子
下面参考原论文和pytorch源码,实现自己手写的lrn算子,其中avg_pool3d就是实现了按照半径 depth_radius求每个图里的每个像素的平方:
def custom_lrn(input_tensor, N=5, alpha=1e-4, beta=0.75):x_sq = torch.square(input_tensor).unsqueeze(1)sizes = input_tensor.size()x_reshape = x_sq.view(sizes[0], 1, sizes[1], sizes[2], -1)x_pad = torch.nn.functional.pad(x_reshape, (0,0,0,0,2,2))x_pool3d = torch.nn.functional.avg_pool3d(x_pad, (N, 1, 1),stride=1).squeeze(1)x_squeeze = x_pool3d.view(sizes)x_scale = torch.mul(x_squeeze, alpha) + (1.0)x_scale_pow = torch.pow(x_scale, beta)out = input_tensor / x_scale_powreturn out
测试一下和pytorch实现的官方API的结果情况:
import torch
import numpy as np
inputs = torch.randn(1, 64, 56, 56, dtype=torch.float32)*20
SEED = 1
def set_seed(seed=1):np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed_all(seed)
set_seed(SEED)def custom_lrn(input_tensor, N=5, alpha=1e-4, beta=0.75):x_sq = torch.square(input_tensor).unsqueeze(1)sizes = input_tensor.size()x_reshape = x_sq.view(sizes[0], 1, sizes[1], sizes[2], -1)x_pad = torch.nn.functional.pad(x_reshape, (0,0,0,0,2,2))x_pool3d = torch.nn.functional.avg_pool3d(x_pad, (N, 1, 1),stride=1).squeeze(1)x_squeeze = x_pool3d.view(sizes)x_scale = torch.mul(x_squeeze, alpha) + (1.0)x_scale_pow = torch.pow(x_scale, beta)out = input_tensor / x_scale_powreturn outlrn2 = torch.nn.functional.local_response_norm(inputs, size=5)# print(custom_lrn(inputs))
# print(lrn2)
print('custom_lrn与pytorch官方的lrn算子是否相等:',torch.allclose(custom_lrn(inputs), lrn2))
测试输出结果完全一致,说明此算子与官方实现的算子是一致的。
>> custom_lrn与pytorch官方的lrn算子是否相等:True
相关文章:
手写实现LRN局部响应归一化算子
1、重写算子的需求 芯片推理过程中遇到很多算子计算结果不对的情况,原因是封装的算子会在某些特殊情况下计算超限,比如输入shape特别大或者数值特别大时,LRN算子计算会出现NAN值,所以需要重写算子。先对输入数据做一个预处理&…...
朗思科技数字员工通过统信桌面操作系统兼容性互认认证
近日,朗思科技数字员工与统信桌面操作系统V20进行了兼容互认,针对上述产品的功能、兼容性方面,通过共同严格测试表明——朗思科技数字员工在统信桌面操作系统 V20上整体运行稳定,满足功能及兼容性测试要求。 北京朗思智能科技有限…...
十六、Webpack常见的插件和模式
一、认识插件Plugin Webpack的另一个核心是Plugin,官方有这样一段对Plugin的描述: While loaders are used to transform certain types of modules, plugins can be leveraged to perform a wider range of tasks like bundle optimization, asset m…...
ChatGPT新增超强插件:文本直接生成视频、海报,支持自定义修改!
全球著名在线设计平台Canva,在ChatGPT Plus(GPT-4)上推出了插件功能,用户通过文本提示,几秒钟就能生成演示文稿、PPT插图、电子书封面、宴会邀请函等各种精美设计海报,同时支持生成视频。 该插件最强大的功…...
亚像素边缘提取的例子
求帮忙下载: 1.http://download.csdn.net/detail/pkma75/925394 pkma75 资源积分:1分 备注:pdf格式,用曲线拟合的方法计算亚像素,编程易实现,具有较强的实用价值 2.http://download.csdn.net/detail/kua…...
Wayland:推动Linux桌面进入下一代图形显示时代
文章首发地址 Wayland是Linux系统下的一种图形显示协议,旨在替代X Window System(X11)作为Linux桌面环境的图形显示服务。下面是对Wayland的详细解释: 背景: 传统的Linux桌面环境使用X Window System(X11&…...
mysql外键(foreign key)
简介 MySQL的外键约束用来在两个表数据之间建立链接,其中一张表的一个字段被另一张表中对应的字段约束。也就是说,设置外键约束至少要有两种表,被约束的表叫做从表(子表),另一张叫做主表(父表&…...
内网穿透——Windows搭建服务器
文章目录 1.前言2. Emby网站搭建2.1. Emby下载和安装2.2 Emby网页测试 3. 本地网页发布3.1 注册并安装cpolar内网穿透3.2 Cpolar云端设置3.3 Cpolar内网穿透本地设置 4.公网访问测试5.结语 1.前言 在现代五花八门的网络应用场景中,观看视频绝对是主力应用场景之一&…...
UE5.1 + Android 环境搭建
官方文档:一定一定一定要参照官方文档,因UE不同版本对应的环境搭建并不完全一致。 准备工作 通过EpicGameLaunch下载Android目标平台。 必须安装jdk1.8并配置环境变量,UE5.1不要使用最新的jdk20;下载地址 安装 Android Studio …...
华为python面试题目
华为Python常见的面试问题包括: Python是如何被解释的?什么是PEP8?Python是怎样管理内存的?什么是Python装饰器?Python提供哪些内置类型?Python中的异常处理是怎样的?什么是Python的上下文管理器?Python中的列表推导式是什么?Python中的生成器是什么?什么是Python的装…...
IP代理安全吗?如何防止IP被限制访问?
你是否遇到过可以正常上网,但访问某个网站却被禁止?注册某个网站账号,却被封号?那都是因为IP出现问题!您的IP地址透露很多关于您的信息,包括您的位置和互联网活动。 在本文中,我们将一起了解IP地…...
使用 gst-template 创建自己的 gstreamer 插件
系列文章目录 创建 gstreamer 插件的几种方式 使用 gst-template 创建自己的 gstreamer 插件 使用 gst-plugins-bad 里面的 gst-element-maker 工具创建gstreamer 插件 文章目录 系列文章目录前言一、如何获取 gst-template 仓库代码二、gst-template 相关的软件依赖1. 根据自…...
nginx反向代理,用户访问服务器1的80端口,请求转发至服务器2,3的8882端口
两台应用服务器,一台nginx,用户访问nginx服务器80端口,将请求转发至服务器2和服务器3的8882端口。 1、修改nginx配置文件 upstream backend {server 10.60.16.187:8882;server 10.60.16.188:8882;}server {listen 80;server_name 10.6…...
Python学习笔记:导入txt、xlsx文件并做简单函数处理
1.txt文件 1.1路径 file_path "E:\Python Project\temp.txt" with open(file_path) as f:content1 f.read() 导入文件时,如果直接放文件绝对路径上去会报错,这是因为\P是转义字符 所以在绝对路径前面加r可以避免将引号内的内容识别成转义…...
uniapp 轮播列表左右滑动,滑动到中间放大
html <!-- 轮播 --><view class"heade"><swiper class"swiper" display-multiple-items3 circulartrue previous-margin1rpxnext-margin1rpx current0 change"swiperChange" ><block v-for"(item,index) in list"…...
5. 自动求导
5.1 向量链式法则 ① 例子1是一个线性回归的例子,如下图所示。 5.2 自动求导 5.3 计算图 5.4 两种模型 ① b是之前计算的结果,是一个已知的值。 5.5 复杂度 5.6 自动求导 import torch x torch.arange(4.0) x 结果: ② 在外面计算y关于x的…...
【IEEE会议】 第三届智能通信与计算国际学术会议(ICC 2023)
第三届智能通信与计算国际学术会议 2023 3rd International Conference on Intelligent Communications and Computing 第三届智能通信与计算国际学术会议(ICC 2023)定于2023年11月24-26日在中国南昌隆重举行。会议旨在为从事智能通信与计算研究的专家学…...
巨人互动|Facebook海外户Facebook风控规则有什么
Facebook是全球最大的社交媒体平台之一,每天有数十亿的用户在其上发布、分享和交流各种内容。为了维护平台的安全性和用户体验,Facebook制定了严格的风控规则来监测和处理违规行为。下面小编讲讲Facebook风控规则。 巨人互动|Google海外户&Google Ad…...
pip命令来查看当前激活的虚拟环境
要查看已安装的虚拟环境,您可以使用以下命令: pip freeze该命令将列出所有已安装的包及其版本信息。在虚拟环境中运行时,它将仅显示该虚拟环境中安装的包。 这将列出所有已创建的虚拟环境以及当前激活的环境。 python -m venv list...
STL stack 和 queue
文章目录 一、stack 类和 queue 类的模拟实现 stack 只允许在一端进行插入删除,是一个后进先出(LIFO)的结构,可以存储任意类型 queue 只允许在一端进行插入,另一端进行删除,是一个先进先出(FIFO)的结构,可以存储任意类…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
