当前位置: 首页 > news >正文

【python绘图—colorbar操作学习】

文章目录

  • Colorbar的作用
  • Colorbar的操作
    • 截取cmap
    • 拼接cmap
    • 双刻度列colorbar
  • 引用

Colorbar的作用

Colorbar(颜色条)在绘图中的作用非常重要,它主要用于以下几个方面:

  • 表示数据范围: Colorbar可以显示图中的颜色映射范围,帮助理解图中不同颜色所代表的数据范围。例如,在热力图中,不同的颜色可能表示不同的温度值,颜色条可以告诉哪种颜色对应哪个温度值。
  • 数据解释: Colorbar可以提供关于颜色和数据之间的映射关系的信息。可以通过查看颜色条来了解不同颜色在图中代表的数据值。
  • 数据分布: 颜色条可以帮助理解数据的分布情况。例如,颜色条中的颜色分布越均匀,表示数据在整个范围内都有分布。

Colorbar的操作

截取cmap


import numpy as np                                                            
import matplotlib as mpl                                                         
import matplotlib.pyplot as plt                                                  
from matplotlib.colors import ListedColormap                                   
cmap=mpl.cm.jet_r          #获取色条    # print(cmap._segmentdata)                                                
newcolors=cmap(np.linspace(0,1,256))  #分片操作           
# print(newcolors)                      
newcmap=ListedColormap(newcolors[125:]) #切片取舍          
# print(newcmap)                        
fig=plt.figure(figsize=(1.5,0.3),dpi=500)                                  
ax1=fig.add_axes([0,0,1,0.45])                                                 
ax2=fig.add_axes([0,1,1,0.45])                                              
norm =mpl.colors.Normalize(vmin=0, vmax=10)                                
fc1=fig.colorbar(mpl.cm.ScalarMappable(norm=norm,cmap='jet_r'),              cax=ax1,                                                      orientation='horizontal',                                                         extend='both')                                                                    
fc2=fig.colorbar(mpl.cm.ScalarMappable(norm=norm,cmap=newcmap),                                            cax=ax2,                                                      orientation='horizontal',                                         extend='both')                                                 
for i in [fc1,fc2]:                                                           i.ax.tick_params(labelsize=3,width=0.5,length=0.5)                           i.outline.set_linewidth(0.5)      

在这里插入图片描述

拼接cmap


import numpy as np                                                        
import matplotlib as mpl                                                       
import matplotlib.pyplot as plt                                                        
from matplotlib.colors import ListedColormap                                 
import cmaps                                                                    
plt.rcParams['font.sans-serif']=['FangSong']         
plt.rcParams['font.size']=18                 
cmap1=cmaps.spread_15lev_r                                                   
cmap2=cmaps.sunshine_diff_12lev                                                
list_cmap1=cmap1(np.linspace(0,1,15))                                      
list_cmap2=cmap2(np.linspace(0,1,12))                                           
new_color_list=np.vstack((list_cmap1,list_cmap2))                            
new_cmap=ListedColormap(new_color_list,name='new_cmap ')                                                                      
fig=plt.figure(figsize=(6,3))                                        
ax1=fig.add_axes([0,0,1,0.15])                                                 
ax2=fig.add_axes([0,0.3,1,0.15])                                            
ax3=fig.add_axes([0,0.6,1,0.15])                                              
norm =mpl.colors.Normalize(vmin=0, vmax=10)                              
fc1=fig.colorbar(mpl.cm.ScalarMappable(norm=norm,                            cmap=cmap1),cax=ax1,                                     orientation='horizontal',extend='both')                       
fc2=fig.colorbar(mpl.cm.ScalarMappable(norm=norm,                      cmap=cmap2),cax=ax2,                                      orientation='horizontal',extend='both')                    
fc3=fig.colorbar(mpl.cm.ScalarMappable(norm=norm,                         cmap=new_cmap),cax=ax3,                                orientation='horizontal',extend='both') 
for i in [fc1,fc2,fc3]:                                                           # i.ax.tick_params(labelsize=20,width=0.01,length=1)                           i.outline.set_linewidth(0.5)

在这里插入图片描述

双刻度列colorbar

import numpy as np                                                            
import matplotlib as mpl                                                         
import matplotlib.pyplot as plt                                                  
import matplotlib.colors as mcolors                                               
plt.rcParams['font.sans-serif']=['Times New roman']                                  
##第一步,制作雨量色条                                                       
fig=plt.figure(figsize=(1.5,0.2),dpi=500)                                        
ax=fig.add_axes([0,0,1,0.5])                                                 
colorlevel=[0.1,10.0,25.0,50.0,100.0,250.0,500.0]                        #雨量等级               
colordict=['#A6F28F','#3DBA3D','#61BBFF','#0000FF','#FA00FA','#800040']  #颜色列表                                                                     
cmap=mcolors.ListedColormap(colordict)                                   #产生颜色映射                    
norm=mcolors.BoundaryNorm(colorlevel,cmap.N)                             #生成索引                       
fc=fig.colorbar(mpl.cm.ScalarMappable(norm=norm,cmap=cmap),                cax=ax,orientation='horizontal',extend='both')                   
fc.ax.tick_params(which='major',labelsize=3,direction='out',width=0.5,length=1)                           
fc.outline.set_linewidth(0.3)        ##第二步,生成双刻度列##                                                      
ax2=fc.ax                                                #召唤出fc的ax属性并省称为ax2,这时ax2即视为一个子图            
ax2.xaxis.set_ticks_position('top')                      #将数值刻度移动到上边                        
ax2.tick_params(labelsize=3,top=True,width=0.5,length=1) #修改刻度式,并使上有刻度ax3=ax2.secondary_xaxis('bottom')                                                                           
ax3.tick_params(labelsize=3,width=0.5,length=1)                              
ax3.spines['bottom'].set_bounds(0.1,500)                  #截去多余的部分                         
ax3.set_xticks([40,120,210,290,380,460])                                   
ax3.set_xticklabels(['小雨','中雨','大雨','暴雨','大暴雨','特大暴雨'], fontname="youyuan", fontweight='bold')                    
ax3.spines['bottom'].set_linewidth(0.3)                    #修改底部到框线粗细

在这里插入图片描述

引用

参考资料:https://mp.weixin.qq.com/s/KeRRApCk3qhbRsOvD_7jng

相关文章:

【python绘图—colorbar操作学习】

文章目录 Colorbar的作用Colorbar的操作截取cmap拼接cmap双刻度列colorbar 引用 Colorbar的作用 Colorbar(颜色条)在绘图中的作用非常重要,它主要用于以下几个方面: 表示数据范围: Colorbar可以显示图中的颜色映射范围…...

Python+Appium自动化测试-编写自动化脚本

之前已经讲述怎样手动使用appium-desktop启动测试机上的app,但我们实际跑自动化脚本的过程中,是需要用脚本调用appium启动app的,接下来就尝试写Python脚本启动app并登陆app。环境为Windows10 Python3.7 appium1.18.0 Android手机 今日头条…...

AMEYA360|ROHM罗姆首次推出硅电容器BTD1RVFL系列

全球知名半导体制造商ROHM(总部位于日本京都市)新开发出在智能手机和可穿戴设备等领域应用日益广泛的硅电容器。利用ROHM多年来积累的硅半导体加工技术,新产品同时实现了更小的尺寸和更高的性能。 随着智能手机等应用的功能增加和性能提升,业界对于支持更…...

Linux发散小知识

linux/unix哲学:KISS Keep It Simple and Stuid。 "提供一套机制,而不是策略",“万般皆文本,四处用脚本” unix的数据流追求简单化、通用性、可视性、设备无关,二进制肯定无法做到这些,因此文本…...

GTS 中testPeakPssOfAllApps fail 详解

0. 前言 GTS 在测试 case armeabi-v7a GtsMemoryHostTestCases 的时候出现下面异常,本文总结一下。 com.google.android.memory.gts.AllAppsMemoryHostTest#testPeakPssOfAllApps 1. error log 09-14 10:16:34 I/TestFailureListener: FailureListener.testFaile…...

linux查看远程仓库的分支

在 Linux 终端中&#xff0c;您可以使用 git 命令来查看远程仓库的分支。git 是版本控制系统&#xff0c;用于管理代码的版本和协作开发。以下是查看远程仓库分支的方法&#xff1a; 查看所有远程分支&#xff1a; git ls-remote <remote_repository_url> 这个命令会显示…...

【Linux常用命令】

编程不良人 Linux 笔记 一、防火墙相关 1、查看防火墙状态 systemctl status flrewalld2、如果防火墙是开启状态的&#xff0c;需要关闭 systemctl stop firewalld3、永久行关闭操作&#xff08;禁止开机自启动&#xff09; 因为防火默认是开启状态的&#xff0c;如果只是手…...

QString类与整型,浮点数互转

本文介绍QString类与整型&#xff0c;浮点数之间的相互转换。 1.QString类转整型 QString类转整型&#xff08;包含2进制&#xff0c;8进制&#xff0c;16进制&#xff09;&#xff0c;可以使用QString的toInt()函数。 QString str("1234"); bool bOK false; int…...

基于STM32F407ZET6的环境温湿度监控系统(粤嵌GEC-M4)

注意使用事项&#xff1a; 开发板如下 由于外部晶振是8M&#xff0c;需要修改setup和stm32f4头文件的晶振值。 操作如下&#xff1a; system_stm32f4xx.c的254行 #define PLL_M 8stm32f4xx.h的127行 #define HSE_VALUE ((uint32_t)8000000) /*!< Value of the Ex…...

2023年五一杯数学建模A题无人机定点投放问题求解全过程论文及程序

2023年五一杯数学建模 A题 无人机定点投放问题 原题再现&#xff1a; 随着科学技术的不断发展&#xff0c;无人机在许多领域都有着广泛的应用。对于空中执行定点投放任务的无人机&#xff0c;其投放精度不仅依赖于无人机的操作技术&#xff0c;而且还与无人机执行任务时所处状…...

Redis 7 第九讲 微服务集成Redis 应用篇

Jedis 理论 Jedis是redis的java版本的客户端实现&#xff0c;使用Jedis提供的Java API对Redis进行操作&#xff0c;是Redis官方推崇的方式&#xff1b;并且&#xff0c;使用Jedis提供的对Redis的支持也最为灵活、全面&#xff1b;不足之处&#xff0c;就是编码复杂度较高。 …...

c++day7

仿照vector手动实现自己的myVector&#xff0c;最主要实现二倍扩容功能 #include <iostream>using namespace std; template <typename T> class Myvector { private:T *start;//起始指针T *end;//数组末尾指针T *last;//数组有效长度的尾指针 public://定义无参构…...

C++学习概述

1.c 为啥需要头文件 如果您刚开始使用 C&#xff0c;您可能想知道为什么C需要 #include 头文件&#xff0c;以及为什么一个程序要拥有多个 .cpp 文件。 原因很简单&#xff1a; a) 减少编译时间 随着程序的增长&#xff0c;您的代码也会增长&#xff0c;如果所有内容都在一个…...

关系型数据库和非关系型数据库

关系型数据库和非关系型数据库 关系型数据库非关系型数据库 非关系型数据库和关系型数据库是两种不同类型的数据库管理系统&#xff0c;它们用于存储和管理数据&#xff0c;但在数据组织和处理方式上有一些重要的区别。 关系型数据库 1.结构化数据存储&#xff1a;关系型数据库…...

基于SSM的快餐店点餐服务系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…...

使用vcpkg配置CGAL+visual studio 2022

先安装vcpkg C:\dev> git clone https://github.com/microsoft/vcpkg C:\dev> cd vcpkg C:\dev\vcpkg> .\bootstrap-vcpkg.bat 运行后&#xff0c;先执行 C:\dev\vcpkg> .\vcpkg.exe install yasm-tool:x86-windows 这是因为gmp库中有个bug&#xff0c;只能这样…...

【Spring面试】三、Bean的配置、线程安全、自动装配

文章目录 Q1、什么是Spring Bean&#xff1f;和对象有什么区别Q2、配置Bean有哪几种方式&#xff1f;Q3、Spring支持的Bean有哪几种作用域&#xff1f;Q4、单例Bean的优势是什么&#xff1f;Q5、Spring的Bean是线程安全的吗&#xff1f;Q6、Spring如何处理线程并发问题&#xf…...

flink连接kafka报:org.apache.kafka.common.errors.TimeoutException

测试flink1.12.7 连接kafka&#xff1a; package org.test.flink;import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutio…...

sql order by 排序 null值放最后,怎么写

在 SQL 中&#xff0c;可以使用 ORDER BY 子句对结果进行排序。如果要将 NULL 值放在最后&#xff0c;可以在排序列中使用 CASE 表达式来处理。 下面是一个示例查询&#xff0c;将 NULL 值放在最后进行排序&#xff1a; SELECT column1, column2 FROM your_table ORDER BY CAS…...

HDMI字符显示实验

FPGA教程学习 第十五章 HDMI字符显示实验 文章目录 FPGA教程学习前言实验原理程序设计像素点坐标模块字符叠加模块 实验结果知识点总结 前言 在HDMI输出彩条的基础上输出osd叠加信息。 实验原理 实验通过字符转换工具将字符转换为 16 进制 coe 文件存放到单端口的 ROM IP 核…...

Spring Cloud 框架搭建

Spring Cloud 框架搭建之一基础框架 创建父项目创建子项目 创建父项目 第一步&#xff1a;新建项目&#xff0c;填写基础信息 第二步&#xff1a;这里不需要其他组件直接点next即可。 第三步&#xff1a;pom文件添加下述代码&#xff0c;将父项目设置为pom文件形式打包&#…...

20个非常有用的单行Python代码片段

1. 写在前面 继上篇&#xff0c;继续在本文分享 20 个 Python 单行代码&#xff0c;可以在 30 秒或更短时间内轻松学会。这些单行代码不仅可以提高效率&#xff0c;同时使代码看起来更整洁、更易读。&#xff1a;&#xff09; 个人博客&#xff1a; https://jianpengzhang.git…...

【LangChain系列 9】Prompt模版——MessagePromptTemplate

原文地址&#xff1a;【LangChain系列 9】Prompt模版——MessagePromptTemplate 本文速读&#xff1a; MessagePromptTemplate MessagesPlaceholder 在对话模型(chat model) 中&#xff0c; prompt主要是封装在Message中&#xff0c;LangChain提供了一些MessagePromptTemplat…...

ROS2的学习路径

学习ROS2的建议学习路径&#xff1a; 理解基础知识&#xff1a; 熟悉机器人操作系统&#xff08;ROS&#xff09;的概念及其架构。了解ROS2相对于ROS1的优势以及其提供的关键功能。 安装和配置&#xff1a; 在你选择的操作系统上安装ROS2&#xff08;如Ubuntu、Windows、macOS…...

Maintaining leader role through timed lease mechanism

Continuous understanding of distributed systems design On the one hand 基于定时的租约机制来保持leader角色 基于定时的租约机制来保持leader角色的设计思想是一种在分布式系统中确保高可用性和系统一致性的解决方法。 在分布式系统中&#xff0c;通常会有一个角色被选举…...

Mysql InnoDB引擎 的hash索引

Mysql InnoDB引擎不支持hash索引&#xff0c;但是在内存结构中有一个自适应hash索引&#xff0c;来提高查询性能 当设置hash索引时会自动转换成btree索引 查一下mysql官方文档&#xff1a;https://dev.mysql.com/doc/refman/5.7/en/create-index.html innodb_adaptive_hash_i…...

23年PMP考试如何备考?

接下来我要分享的备考建议分为三个部分&#xff0c;考试相关、备考期间注意和刷题建议。 1、PMP考试相关 PMP考试时间一定不能忘记&#xff0c;要密切关注&#xff0c;或许会出现延期的情况。考试教材现在是第七版教材&#xff0c;建议买一本或者用pdf电子版打印出来&#xf…...

mysql数据库增量备份方案、备份计划(InsCode AI 创作助手)

一、备份计划 以下是MySQL数据库增量备份的一般计划&#xff1a; 创建完整备份&#xff1a;在自动备份计划开始前&#xff0c;先创建一次完整备份。这个备份将包含所有数据和表结构。保存增量备份&#xff1a;在每次备份计划完成后&#xff0c;保存增量备份。这个备份将包含从…...

【Flink】FlinkCDC获取mysql数据时间类型差8小时时区解决方案

1、背景: 在我们使用FlinkCDC采集mysql数据的时候,日期类型是我们很常见的类型,但是FlinkCDC读取出来会和数据库的日期时间不一致,情况如下 FlinkCDC获取的数据中create_time字段1694597238000转换为时间戳2023-09-13 17:27:18 而数据库中原始数据如下,并没有到下午5点…...

Javas | DecimalFormat类、BigDecimal类、Random类

目录&#xff1a; 1.DecimalFormat类2.BigDecimal类3.Random类4.需求&#xff1a;编写程序&#xff0c;生成5个不重复的随机数 1.DecimalFormat类 DecimalFormat 是 NumberFormat 的一个具体子类&#xff0c;用于格式十进制数字。 /*** 关于数字的格式化*/ public class Decima…...

有什么网站是学做吃的/自己可以做网站吗

GridView总结:获取任何一级别中GridView所选中的数据行.GridView gView gridControl.FocusedView as GridView;//選中的GridView int[] rows gView.GetSelectedRows(); //選中的行有時需要根據條件設置某一個單元格未只讀:private void gridView9_ShowingEditor(object sende…...

备案的网站 能拿来做仿站吗/百度搜索引擎推广

概述 为什么使用消息队列 异步处理&#xff1a;提高系统的吞吐量。解耦&#xff1a;系统与系统之间通过消息队列来传递消息&#xff0c;减少系统之间的耦合度。流量削峰&#xff1a;可以通过控制消息队列的长度来控制请求的数量&#xff0c;缓解端时间内系统的高并发。 使用…...

网站建设效果/网站推广服务报价表

一个技术人员必须考虑的问题---转型 转载于:https://www.cnblogs.com/wxbbk/archive/2009/05/04/1449025.html...

标准化建设发展委员会官方网站/网站如何推广营销

redis做压测可以用自带的redis-benchmark工具&#xff0c;使用简单 压测需要一段时间&#xff0c;因为它需要依次压测多个命令的结果&#xff0c;如&#xff1a;get、set、incr、lpush等等&#xff0c;所以我们需要耐心等待&#xff0c;如果只需要压测某个命令&#xff0c;如&a…...

本地编辑wordpress/广西seo优化

因为最近项目有资料需要 插入&#xff0c;但是原有表中可能已经有这个账户&#xff0c;但是没有资料&#xff0c;如果原表没有&#xff0c;则需要插入。 所以也是网上查了一堆资料&#xff0c; MERGE INTO NEWLOCAL_MOBILECARD t1 USING LOCAL_MOBILECARD_TEST t2 ON ( t1.mc…...

做网赚类网站违法吗/深圳全网推广平台

一、centos下载安装 环境&#xff1a;win10系统&#xff0c;虚拟机vm12, centos6.5 http://vault.centos.org/ 链接打开 选择6.5》isos/>x86_64>CentOS-6.5-x86_64-bin-DVD1.iso 下载后&#xff0c;在vm中&#xff0c;新建一个虚拟机&#xff0c;镜像iso文件&#xff0c;…...