opencv 轮廓顶点重新排序----四边形
def reorder(myPoints):# print(myPoints.shape)# 创建一个与myPoints具有相同形状和类型的数组myPointsNew = np.zeros_like(myPoints)# 数组重塑为一个4行2列的数组myPoints = myPoints.reshape((4,2))# 计算myPoints数组中每一行(即每个点)的坐标和add = myPoints.sum(1)# 找出和最小的点(左上角点),将其设置为新数组的第一个点myPointsNew[0] = myPoints[np.argmin(add)]# 找出和最大的点(右下角点),将其设置为新数组的第四个点。myPointsNew[3] = myPoints[np.argmax(add)]# 计算每一行(每个点)的坐标之间的差异,得到一个4x1的数组。diff = np.diff(myPoints,axis=1)# 找到差异最小的点(做下角点),将其设置为新数组的第二个点。myPointsNew[1] = myPoints[np.argmin(diff)]# 找到差异最大的点(右下角点),将其设置为新数组的第三个点。myPointsNew[2] = myPoints[np.argmax(diff)]return myPointsNew
这个函数的操作步骤如下:
创建一个与输入数组 myPoints 具有相同形状的空数组 myPointsNew,用于存储重新排列后的角点。
将输入的 myPoints 数组重新排列为一个 4x2 的数组,其中每一行包含一个点的x和y坐标。
计算每个点的x和y坐标之和,以确定左上角和右下角的点。add数组包含了这些和值。
通过找到和最小的点和和最大的点来确定左上角和右下角的点。
计算每个点的x和y坐标之差,以确定左下角和右上角的点。diff 数组包含了这些差值。
通过找到差值最小的点和差值最大的点来确定左下角和右上角的点。
最终,函数返回一个包含重新排列后的四个角点的数组 myPointsNew,这样你就可以使用这些点来进行后续的操作,如透视变换。
相关文章:
opencv 轮廓顶点重新排序----四边形
def reorder(myPoints):# print(myPoints.shape)# 创建一个与myPoints具有相同形状和类型的数组myPointsNew np.zeros_like(myPoints)# 数组重塑为一个4行2列的数组myPoints myPoints.reshape((4,2))# 计算myPoints数组中每一行(即每个点)的坐标和add …...
【项目实战】【已开源】USB2.0 HUB 集线器的制作教程(详细步骤以及电路图解释)
写在前面 本文是一篇关于 USB2.0 HUB 集线器的制作教程,包括详细的步骤以及电路图解释。 本文记录了笔者制作 USB2.0 HUB 集线器的心路历程,希望对你有帮助。 本文以笔记形式呈现,通过搜集互联网多方资料写成,非盈利性质…...
分布式运用之rsync远程同步
一、rsync的相关知识 1.1 rsync简介 rsync(Remote Sync,远程同步)是一个开源的快速备份工具,可以在不同主机之间镜像同步整个目录树,支持增量备份,并保持链接和权限,且采用优化的同步算法&am…...
誉天在线项目~ElementPlus实现浏览页面注意点
浏览按钮 点击浏览按钮,传递列表数据索引值。 根据索引值从列表数据数组中获取当前行数据。 <el-button click"toView(scope.$index)" type"success" size"small"><el-icon><EditPen /></el-icon> 浏览<…...
神经网络-pytorch版本
pytorch神经网络基础 torch简介 torch和numpy import torch import numpy as np np_datanp.arange(6).reshape((2,3)) torch_datatorch.from_numpy(np_data) tensor2arraytorch_data.numpy() print(np_data,"\n",torch_data,"\n",tensor2array)torch的数…...
uniapp vue 页面传参问题encodeURIComponent
页面传参objet json序列化后可能会报错 Uncaught SyntaxError: missing ) after argument list 但不一定是数据有问题,而是json成字符串后,字符串中有特殊字符,所以导致parse的时候格式不对。所以解决方案如下 如果传递参数为对象的时候&…...
【GDAL】tif影像拼接和目标截取
原文作者:我辈李想 版权声明:文章原创,转载时请务必加上原文超链接、作者信息和本声明。 文章目录 一、gdal.Warp拼接tif二、截取1.通过经纬范围截取拼接的影像2.通过shp范围截取凭借后影像 三、WarpOptions其他参数四、其他方式裁剪1.通过sh…...
ARM核心时间线
指令集架构处理器家族(ARM RISC)ARMv1ARM1ARMv2ARM2、ARM3ARMv3ARM6、ARM7ARMv4StrongARM、ARM7TDMI、ARM9TDMIARMv5ARM7EJ、ARM9E、ARM10E、XScaleARMv6ARM11、ARM Cortex-MARMv7ARM Cortex-A、ARM Cortex-M、ARM Cortex-RARMv8-A armv8.2Cortex-A35、Cortex-A50系列[18]、Cor…...
【Redis】深入探索 Redis 的数据类型 —— 列表 List
文章目录 一、List 类型介绍二、List 类型相关命令2.1 LPUSH 和 RPUSH、LPUSHX 和 RPUSHX2.2 LPOP 和 RPOP、BLPOP 和 BRPOP2.3 LRANGE、LINDEX、LINSERT、LLEN2.4 列表相关命令总结 三、List 类型内部编码3.1 压缩列表(ziplist)3.2 链表(lin…...
高精度乘除法(超详细)
高精度乘除法(超详细) 题目1-高精度乘法 给定两个非负整数(不含前导 0) A 和 B,请你计算 AB 的值。 输入格式 共两行,第一行包含整数 A,第二行包含整数 B。 输出格式 共一行,包含…...
List 获取前N条数据
1.使用for循环遍历 public static void main(String[] args) {int limit 5;List<Integer> oldList Lists.newArrayList(1, 2, 3, 4, 5, 6, 7);List<Integer> newList Lists.newArrayList();if (oldList.size() < limit) {newList.addAll(oldList);return;}fo…...
Spring入门控制反转(或依赖注入)AOP的关键概念 多配置文件与web集成
目录 1. 什么是spring,它能够做什么? 2. 什么是控制反转(或依赖注入) 3. AOP的关键概念 4. 示例 4.1 创建工程 4.2 pom文件 4.3 spring配置文件 4.4 示例代码 4.4.1 示例1 4.4.2 示例2 (abstract,parent示例) 4.4.3 使…...
排序算法-希尔排序
属性 1. 希尔排序是对直接插入排序的优化。 2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap 1时,数组已经接近有序的了,这样就会很 快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。 3.…...
ClientDataSet运行中出现“ClientDataSet:dataset not in edit or insert mode”(一)
在打开数据表文件,对ClientDataSet执行Append或Insert时,“ClientDataSet:dataset not in edit or insert mode”: 一、搜索问题 1、执行“显示数据后”,再执行Append,出错,说明ClientDataSet处…...
华为GaussDB数据库
Gauss数据库初识_高斯数据库_ygpGoogle的博客-CSDN博客 Redhat 7.6安装GaussDB_100_1.0.1详细攻略_gaussdb_100_1.0.1-database-redhat-64bit.tar.gz dow_博德1999的博客-CSDN博客 https://www.ngui.cc/el/3381579.html?actiononClick 初识GaussDB——GaussDB的发展历程、部…...
Flink、Spark、Hive集成Hudi
环境描述: hudi版本:0.13.1 flink版本:flink-1.15.2 spark版本:3.3.2 Hive版本:3.1.3 Hadoop版本:3.3.4 一.Flink集成Hive 1.拷贝hadoop包到Flink lib目录 hadoop-client-api-3.3.4.jar hadoop-client-runtime-3.3.4.jar 2.下载上传flink-hive的jar包 flink-co…...
百度编辑器 Ueditor 视频上传时 目录创建失败 解决办法
找到百度编辑器的上传类 Uploader.class.php文件.大约111左右 //$this->stateInfo $this->getStateInfo("ERROR_CREATE_DIR");//这句注释掉 $this->stateInfo $dirname;//换成这一句然后,进编辑器上传.会提示出一个错误的文件保存路径 双击复制下来这个路…...
Go 字符串处理
一、 字符串处理函数 我们从文件中将数据读取出来以后,很多情况下并不是直接将数据打印出来,而是要做相应的处理。例如:去掉空格等一些特殊的符号,对一些内容进行替换等。 这里就涉及到对一些字符串的处理。在对字符串进行处理时…...
家政服务接单小程序开发源码 家政保洁上门服务小程序源码 开源完整版
分享一个家政服务接单小程序开发源码,家政保洁上门服务小程序源码,一整套完整源码开源,可二开,含完整的前端后端和详细的安装部署教程,让你轻松搭建家政类的小程序。家政服务接单小程序开发源码为家政服务行业带来了诸…...
SuperMap iClient3D 11i (2023) SP1 for Cesium之移动实体对象
作者:nannan 目录 前言 一、代码思路 1.1 绘制面实体对象 1.2 鼠标左键按下事件 1.3 鼠标移动事件 1.4 鼠标左键抬起事件 二、运行效果 三、注意事项 前言 SuperMap 官网三维前端范例 编辑线面,可以对面实体对象的节点进行增加、删除以及修改位置…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
