当前位置: 首页 > news >正文

分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测

分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测

目录

    • 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

基于局部费歇尔判别数据降维的LFDA-SVM的二分类及多分类建模做多特征输入单输出的二分类及多分类模型。
程序内注释详细,直接替换数据就可以用。
程序语言为matlab。
程序可出分类效果图,降维展示图,混淆矩阵图。
想要的私聊我吧。
PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。

程序设计

  • 完整源码和数据下载私信博主回复** Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测**。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');
%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';
end

参考资料

[1] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503
[2] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关文章:

分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测

分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测 目录 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于局部费歇尔判别数据降维的L…...

Say0l的安全开发-代理扫描工具-Sayo-proxyscan【红队工具】

写在前面 终于终于,安全开发也练习一年半了,有时间完善一下项目,写写中间踩过的坑。 安全开发的系列全部都会上传至github,欢迎使用和star。 工具链接地址 https://github.com/SAY0l/Sayo-proxyscan 工具简介 SOCKS4/SOCKS4…...

使用FFmpeg+ubuntu系统转化flac无损音频为mp3

功能需求如上题,我们来具体的操作一下: 1.先在ubuntu上面安装FFmpeg:sudo apt install ffmpeg 2.进入有flac音频文件的目录使用下述命令: ffmpeg -i test.FLAC -c:a libmp3lame -q:a 2 output.mp3 3.如果没有什么意外的话,你就能看到你的文件夹里面已经有转化好的mp3文件了 批…...

I/O多路复用三种实现

一.select 实现 (1)select流程 基本流程是: 1. 先构造一张有关文件描述符的表; fd_set readfds 2. 清空表 FD_ZERO() 3. 将你关心的文件描述符加入到这…...

DataInputStream数据读取 Vs ByteBuffer数据读取的巨大性能差距

背景: 今天在查找一个序列化和反序列化相关的问题时,意外发现使用DataInputStream读取和ByteBuffer读取之间性能相差巨大,本文就来记录下这两者在读取整数类型时的性能差异,以便在平时使用的过程中引起注意 DataInputStream数据…...

org.apache.flink.table.api.TableException: Sink does not exists

FlinkSQL_1.12_用DDL实现Kafka到MySQL的数据传输_实现按照条件进行过滤写入MySQL_flink从kafka拉取数据并过滤数据写入mysql_旧城里的阳光的博客-CSDN博客 参考这篇文章,写了kafka到mysql的代码例子,因为自己改了表结构,运行下面代码&#x…...

【多线程】CAS 详解

CAS 详解 一. 什么是 CAS二. CAS 的应用1. 实现原子类2. 实现自旋锁 三. CAS 的 ABA 问题四. 相关面试题 一. 什么是 CAS CAS: 全称Compare and swap,字面意思:”比较并交换“一个 CAS 涉及到以下操作: 我们假设内存中的原数据 V,旧的预期值…...

卷积神经网络实现咖啡豆分类 - P7

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 目录 环境步骤环境设置包引用全局设备对象 数据准备查看图像的信息制作数据集 模型设…...

C++之默认与自定义构造函数问题(二百一十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

Docker从认识到实践再到底层原理(五)|Docker镜像

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...

【Flowable】任务监听器(五)

前言 之前有需要使用到Flowable,鉴于网上的资料不是很多也不是很全也是捣鼓了半天,因此争取能在这里简单分享一下经验,帮助有需要的朋友,也非常欢迎大家指出不足的地方。 一、监听器 在Flowable中,我们可以使用监听…...

spring-kafka中ContainerProperties.AckMode详解

近期,我们线上遇到了一个性能问题,几乎快引起线上故障,后来仅仅是修改了一行代码,性能就提升了几十倍。一行代码几十倍,数据听起来很夸张,不过这是真实的数据,线上错误的配置的确有可能导致性能…...

【rpc】Dubbo和Zookeeper结合使用,它们的作用与联系(通俗易懂,一文理解)

目录 Dubbo是什么? 把系统模块变成分布式,有哪些好处,本来能在一台机子上运行,为什么还要远程调用 Zookeeper是什么? 它们进行配合使用时,之间的关系 服务注册 服务发现 动态地址管理 Dubbo是…...

ChatGPT的未来

随着人工智能的快速发展,ChatGPT作为一种自然语言生成模型,在各个领域都展现出了巨大的潜力。它不仅可以用于日常对话、创意助手和知识查询,还可以应用于教育、医疗、商业等各个领域,为人们带来更多便利和创新。 在教育领域&#…...

Pytorch模型转ONNX部署

开始以为会很困难,但是其实非常方便,下边分两步走:1. pytorch模型转onnx;2. 使用onnx进行inference 0. 准备工作 0.1 安装onnx 安装onnx和onnxruntime,onnx貌似是个环境。。倒是没有直接使用,onnxruntim…...

k8s优雅停服

在应用程序的整个生命周期中,正在运行的 pod 会由于多种原因而终止。在某些情况下,Kubernetes 会因用户输入(例如更新或删除 Deployment 时)而终止 pod。在其他情况下,Kubernetes 需要释放给定节点上的资源时会终止 po…...

面试题五:computed的使用

题记 大部分的工作中使用computed的频次很低的,所以今天拿出来一文对于computed进行详细的介绍,因为Vue的灵魂之一就是computed。 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护…...

完美的分布式监控系统 Prometheus与优雅的开源可视化平台 Grafana

1、之间的关系 prometheus与grafana之间是相辅相成的关系。简而言之Grafana作为可视化的平台,平台的数据从Prometheus中取到来进行仪表盘的展示。而Prometheus这源源不断的给Grafana提供数据的支持。 Prometheus是一个开源的系统监控和报警系统,能够监…...

黑马JVM总结(九)

(1)StringTable_调优1 我们知道StringTable底层是一个哈希表,哈希表的性能是跟它的大小相关的,如果哈希表这个桶的个数比较多,元素相对分散,哈希碰撞的几率就会减少,查找的速度较快&#xff0c…...

如何使用 RunwayML 进行创意 AI 创作

标题:如何使用 RunwayML 进行创意 AI 创作 介绍 RunwayML 是一个基于浏览器的人工智能创作工具,可让用户使用各种 AI 功能来生成图像、视频、音乐、文字和其他创意内容。RunwayML 的功能包括: * 图像生成:使用生成式对抗网络 (…...

【css】能被4整除 css :class,判断一个数能否被另外一个数整除,余数

判断一个数能否被另外一个数整除 一个数能被4整除的表达式可以表示为:num%40,其中,num为待判断的数,% 为取模运算符,为等于运算符。这个表达式的意思是,如果num除以4的余数为0,则返回true&…...

ChatGPT与日本首相交流核废水事件-精准Prompt...

了解更多请点击:ChatGPT与日本首相交流核废水事件-精准Prompt...https://mp.weixin.qq.com/s?__bizMzg2NDY3NjY5NA&mid2247490070&idx1&snebdc608acd419bb3e71ca46acee04890&chksmce64e42ff9136d39743d16059e2c9509cc799a7b15e8f4d4f71caa25968554…...

关于 firefox 不能访问 http 的解决

情景: 我在虚拟机 192.168.x.111 上配置了 DNS 服务器,在 kali 上设置 192.168.x.111 为 DNS 服务器后,使用 firefox 地址栏搜索域名 www.xxx.com ,访问在 192.168.x.111 搭建的网站,本来经 192.168.x.111 DNS 服务器解…...

68、Spring Data JPA 的 方法名关键字查询

★ 方法名关键字查询(全自动) (1)继承 CrudRepository 接口 的 DAO 组件可按特定规则来定义查询方法,只要这些查询方法的 方法名 遵守特定的规则,Spring Data 将会自动为这些方法生成 查询语句、提供 方法…...

Brother CNC联网数采集和远程控制

兄弟CNC IP地址设定参考:https://www.sohu.com/a/544461221_121353733没有能力写代码的兄弟可以提前下载好网络调试助手NetAssist,这样就不用写代码来测试连接CNC了。 以上是网络调试助手抓取CNC的产出命令,结果有多个行string需要自行解析&…...

Jenkins 编译 Maven 项目提示错误 version 17

在最近使用集成工具的时候,对项目进行编译提示下面的错误信息: maven-compiler-plugin:3.11.0:compile (default-compile) on project mq-service: Fatal error compiling: error: release version 17 not supported 问题和解决 上面提示的错误信息原…...

数据结构——排序算法——堆排序

堆排序过程如下: 1.用数列构建出一个大顶堆,取出堆顶的数字; 2.调整剩余的数字,构建出新的大顶堆,再次取出堆顶的数字; 3.循环往复,完成整个排序。 构建大顶堆有两种方式: 1.从 0 开…...

【Spring事务底层实现原理】

Transactional注解 Spring使用了TransactionInterceptor拦截器,该拦截器主要负责事务的管理,包括开启、提交、回滚等操作。当在方法上添加Transactional注解时,Spring会在AOP框架中对该方法进行拦截,TransactionInterceptor会在该…...

docker快速安装redis,mysql,minio,nacos等常用软件【持续更新】

redis ①拉取镜像 docker pull redis② 创建容器 docker run -d --name redis --restartalways -p 6379:6379 redis --requirepass "PASSWORD"–requirepass “输入你的redis密码” nacos ①:docker拉取镜像 docker pull nacos/nacos-server:1.2.0②…...

SCRUM产品负责人(CSPO)认证培训课程

课程简介 Scrum是目前运用最为广泛的敏捷开发方法,是一个轻量级的项目管理和产品研发管理框架。产品负责人是Scrum的三个角色之一,产品负责人在Scrum产品开发当中扮演舵手的角色,他决定产品的愿景、路线图以及投资回报,他需要回答…...

怎样建网站 步骤/葫岛百度seo

为了避免更matlab自带的libsvm冲突,这里把lsvmtrain.mexw64改成libsvm_svmtrain.mexw64。代码如下:data[176 70;180 80;161 45;163 47];label[1;1;-1;-1];modellibsvm_svmtrain(label, data);%此处用libsvm_svmtrain,不是svmtraintestdata[19…...

萍乡网站推广/手机seo关键词优化

{*rule !important}这个css规则当今在网页制作的时候的普及已经非常流行了,以前我对它的理解就停留在‘浏览器是否识别阶段’ 而没有真正去研究过,可是现在发生了变化。众所周知,!important这个规则对Ie6.0,Ie7.0和Firefox能写hack&#xff0…...

互联网网站 权限/上海最专业的seo公司

百度 紫光 大疆 爱奇艺 科大讯飞 cvte 蔚来 大华 乐鑫 联发科 20道选择,3道编程 注:以下为个人认为笔试中较难的题目和涉及的知识点 (1)KMP算法,哈夫曼编码? (2)sed指令 (3)二叉排序树 (4)双亲表示法 (5)平均有效内存访问时间…...

专业的网站制作团队/充电宝seo关键词优化

从应用程序的角度来看,线程安全问题的产生是由于多线程应用程序缺乏某种保障——线程同步机制。从广义上来说,Java平台提供的线程同步机制包括锁、volatile关键字、final关键字、static关键字以及一些相关的API,如Object.wait()/Object.nofit…...

重庆忠县网站建设公司哪家好/seo和点击付费的区别

文章目录七、再谈初始化八、protected关键字九、继承方式十、final关键字1.修饰变量或字段,表示常量(即不可修改)2.修饰类:表示此类不能被继承十一、继承和组合七、再谈初始化 继承关系上的执行顺序 代码如下(示例&a…...

做个商城网站要多少钱/杭州推广系统

问题截图&#xff1a; 添加#include<sys/mman.h>头文件可解决’PROT_WRITE’、‘MAP_SHARED’、未定义的问题。 现在还剩O_RDRW未定义的问题。 我再想想吧 先(~ ~) 这问题出现的原因是对应库文件的缺失&#xff0c;添加相应的库文件即可&#xff0c;但是我查了查资料后…...