分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
目录
- 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览





基本介绍
基于局部费歇尔判别数据降维的LFDA-SVM的二分类及多分类建模做多特征输入单输出的二分类及多分类模型。
程序内注释详细,直接替换数据就可以用。
程序语言为matlab。
程序可出分类效果图,降维展示图,混淆矩阵图。
想要的私聊我吧。
PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。
程序设计
- 完整源码和数据下载私信博主回复** Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测**。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 读取数据
res = xlsread('数据集.xlsx');
%% 性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 混淆矩阵
if flag_conusion == 1figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';
end
参考资料
[1] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503
[2] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503
相关文章:
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测 目录 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于局部费歇尔判别数据降维的L…...
Say0l的安全开发-代理扫描工具-Sayo-proxyscan【红队工具】
写在前面 终于终于,安全开发也练习一年半了,有时间完善一下项目,写写中间踩过的坑。 安全开发的系列全部都会上传至github,欢迎使用和star。 工具链接地址 https://github.com/SAY0l/Sayo-proxyscan 工具简介 SOCKS4/SOCKS4…...
使用FFmpeg+ubuntu系统转化flac无损音频为mp3
功能需求如上题,我们来具体的操作一下: 1.先在ubuntu上面安装FFmpeg:sudo apt install ffmpeg 2.进入有flac音频文件的目录使用下述命令: ffmpeg -i test.FLAC -c:a libmp3lame -q:a 2 output.mp3 3.如果没有什么意外的话,你就能看到你的文件夹里面已经有转化好的mp3文件了 批…...
I/O多路复用三种实现
一.select 实现 (1)select流程 基本流程是: 1. 先构造一张有关文件描述符的表; fd_set readfds 2. 清空表 FD_ZERO() 3. 将你关心的文件描述符加入到这…...
DataInputStream数据读取 Vs ByteBuffer数据读取的巨大性能差距
背景: 今天在查找一个序列化和反序列化相关的问题时,意外发现使用DataInputStream读取和ByteBuffer读取之间性能相差巨大,本文就来记录下这两者在读取整数类型时的性能差异,以便在平时使用的过程中引起注意 DataInputStream数据…...
org.apache.flink.table.api.TableException: Sink does not exists
FlinkSQL_1.12_用DDL实现Kafka到MySQL的数据传输_实现按照条件进行过滤写入MySQL_flink从kafka拉取数据并过滤数据写入mysql_旧城里的阳光的博客-CSDN博客 参考这篇文章,写了kafka到mysql的代码例子,因为自己改了表结构,运行下面代码&#x…...
【多线程】CAS 详解
CAS 详解 一. 什么是 CAS二. CAS 的应用1. 实现原子类2. 实现自旋锁 三. CAS 的 ABA 问题四. 相关面试题 一. 什么是 CAS CAS: 全称Compare and swap,字面意思:”比较并交换“一个 CAS 涉及到以下操作: 我们假设内存中的原数据 V,旧的预期值…...
卷积神经网络实现咖啡豆分类 - P7
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 目录 环境步骤环境设置包引用全局设备对象 数据准备查看图像的信息制作数据集 模型设…...
C++之默认与自定义构造函数问题(二百一十七)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...
Docker从认识到实践再到底层原理(五)|Docker镜像
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...
【Flowable】任务监听器(五)
前言 之前有需要使用到Flowable,鉴于网上的资料不是很多也不是很全也是捣鼓了半天,因此争取能在这里简单分享一下经验,帮助有需要的朋友,也非常欢迎大家指出不足的地方。 一、监听器 在Flowable中,我们可以使用监听…...
spring-kafka中ContainerProperties.AckMode详解
近期,我们线上遇到了一个性能问题,几乎快引起线上故障,后来仅仅是修改了一行代码,性能就提升了几十倍。一行代码几十倍,数据听起来很夸张,不过这是真实的数据,线上错误的配置的确有可能导致性能…...
【rpc】Dubbo和Zookeeper结合使用,它们的作用与联系(通俗易懂,一文理解)
目录 Dubbo是什么? 把系统模块变成分布式,有哪些好处,本来能在一台机子上运行,为什么还要远程调用 Zookeeper是什么? 它们进行配合使用时,之间的关系 服务注册 服务发现 动态地址管理 Dubbo是…...
ChatGPT的未来
随着人工智能的快速发展,ChatGPT作为一种自然语言生成模型,在各个领域都展现出了巨大的潜力。它不仅可以用于日常对话、创意助手和知识查询,还可以应用于教育、医疗、商业等各个领域,为人们带来更多便利和创新。 在教育领域&#…...
Pytorch模型转ONNX部署
开始以为会很困难,但是其实非常方便,下边分两步走:1. pytorch模型转onnx;2. 使用onnx进行inference 0. 准备工作 0.1 安装onnx 安装onnx和onnxruntime,onnx貌似是个环境。。倒是没有直接使用,onnxruntim…...
k8s优雅停服
在应用程序的整个生命周期中,正在运行的 pod 会由于多种原因而终止。在某些情况下,Kubernetes 会因用户输入(例如更新或删除 Deployment 时)而终止 pod。在其他情况下,Kubernetes 需要释放给定节点上的资源时会终止 po…...
面试题五:computed的使用
题记 大部分的工作中使用computed的频次很低的,所以今天拿出来一文对于computed进行详细的介绍,因为Vue的灵魂之一就是computed。 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护…...
完美的分布式监控系统 Prometheus与优雅的开源可视化平台 Grafana
1、之间的关系 prometheus与grafana之间是相辅相成的关系。简而言之Grafana作为可视化的平台,平台的数据从Prometheus中取到来进行仪表盘的展示。而Prometheus这源源不断的给Grafana提供数据的支持。 Prometheus是一个开源的系统监控和报警系统,能够监…...
黑马JVM总结(九)
(1)StringTable_调优1 我们知道StringTable底层是一个哈希表,哈希表的性能是跟它的大小相关的,如果哈希表这个桶的个数比较多,元素相对分散,哈希碰撞的几率就会减少,查找的速度较快,…...
如何使用 RunwayML 进行创意 AI 创作
标题:如何使用 RunwayML 进行创意 AI 创作 介绍 RunwayML 是一个基于浏览器的人工智能创作工具,可让用户使用各种 AI 功能来生成图像、视频、音乐、文字和其他创意内容。RunwayML 的功能包括: * 图像生成:使用生成式对抗网络 (…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
