论文总结《A Closer Look at Few-shot Classification Again》
原文链接
A Closer Look at Few-shot Classification Again
摘要
这篇文章主要探讨了在少样本图像分类问题中,training algorithm 和 adaptation algorithm的相关性问题。给出了training algorithm和adaptation algorithm是完全不想关的,这意味着我们在设计少样本学习算法时,可以分别设计模型的training阶段和adaptation阶段。同时文章也在训练集规模、监督学习和自监督学习在少样本学习中的性能、以及标准finetune在少样本图像分类adaptation阶段对模型影响的问题。
Training 和 Adaptation 算法完全不相关

如图,行为training算法,列为adaptation算法。对于行,表示的是不论采用什么样的training算法,adaptation算法对应的性能偏序关系都是一样的;对于列,表示的是不论采用什么样的adaptation算法,training算法对于的性能偏序关系都一样。实验说明两个算法是完全不想关的,因此对于未来更优模型的研究,我们可以分别设计training和adaptation阶段的算法。
training阶段让模型“看到”更多的类使得模型更能适应新类别

如图,在训练算法和适应算法不变的情况下,对十种不同的训练集进行adaptation。如Figure1,2所示,training阶段增加训练的class数量对性能的提升比增加sample的数量更加高效。
自监督学习在少样本图像分类中表现优于监督学习

Figure3每一个点表示的是监督学习模型,Figure4每一个点表示自监督学习模型。Figure3所示,监督学习在性能更好的模型下,通过少样本的调整后,性能反而效果不佳,这说明性能更优的监督模型一定程度上在训练集上过拟合了。
反观自监督学习,自监督学习模型本身的性能和通过少样本微调过后的性能基本呈现线性关系,因此可以说在少样本图像分类问题中,将自监督学习作为backbone网络优于将监督学习作为backbone网络。
training阶段增加sample数量对性能的提升优于增加class数量

可以看到,如果固定Support set size,不同的class数量对性能的影响较小。而增加support set size对于性能的影响较大。
vanilla Finetune效果最好
与之前的一些研究得出的在少样本上Finetune会导致模型的过拟合不同,本文通过实验反而表明,Vanilla Finetune反而带来最佳性能,并且backbone和linear head采用不同的learning rate效果更优。
讨论
文章分析得出,一味的增加训练数据规模并不是一劳永逸的解决方法,我们可以多关注训练知识和调整所需的知识的对齐。如何不像finetune那样暴力的自适应算法,用一种更加精准的对模型进行微调的方法是我们未来可以研究的一点。
相关文章:
论文总结《A Closer Look at Few-shot Classification Again》
原文链接 A Closer Look at Few-shot Classification Again 摘要 这篇文章主要探讨了在少样本图像分类问题中,training algorithm 和 adaptation algorithm的相关性问题。给出了training algorithm和adaptation algorithm是完全不想关的,这意味着我们…...
Postman使用_参数设置和获取
文章目录 参数引用内置动态参数手动添加参数脚本设置参数脚本获取参数 参数就像变量一样,它可以是固定的值,也可以是变化的值,比如:会根据一些条件或其他参数进行变化。我们如果要使用该参数就需要引用它。 参数引用 引用动态参数…...
【SQL】优化SQL查询方法
优化SQK查询 一、避免全表扫描 1、where条件中少使用! 或 <>操作符,引擎会放弃索引,进行全表扫描 2、in \or ,用between 或 exist 代替in 3、where 对字段进行为空判断 4、where like ‘%条件’ 前置百分号 5、where …...
Linux-相关操作
2.2.2 Linux目录结构 /:根目录,一般根目录下只存放目录,在Linux下有且只有一个根目录。所有的东西都是从这里开始。当你在终端里输入“/home”,你其实是在告诉电脑,先从/(根目录)开始…...
二十、MySQL多表关系
1、概述 在项目开发中,在进行数据库表结构设计时,会根据业务需求以及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种对应关系 2、多表关系分类 (1࿰…...
HarmonyOS/OpenHarmony应用开发-DevEco Studio新建项目的整体说明
一、文件-新建-新建项目 二、传统应用形态与IDE自带的模板可供选用与免安装的元服与IDE中自带模板的选择 三、以元服务,远程模拟器为例说明IDE整体结构 1区是工程目录结构,是最基本的配置与开发路径等的认知。 2区是代码开发与修改区,是开发…...
去耦电路设计应用指南(三)磁珠/电感的噪声抑制
(三)磁珠/电感的噪声抑制 1. 电感1.1 电感频率特性 2. 铁氧体磁珠3. LC 型和 PI 型滤波 当去耦电容器不足以抑制电源噪声时,电感器&磁珠/ LC 滤波器的结合使用是很有效的。扼流线圈与铁氧体磁珠 是用于电源去耦电路很常见的电感器。 1. …...
Spring Bean的获取方式
参考https://juejin.cn/post/7251780545972994108?searchId2023091105493913AF7C1E3479BB943C80#heading-12 记录并补充 1.通过BeanFactoryAware package com.toryxu.demo1.beans;import org.springframework.beans.BeansException; import org.springframework.beans.facto…...
4795-2023 船用舱底水处理装置 学习记录
声明 本文是学习GB-T 4795-2023 船用舱底水处理装置. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件规定了船用舱底水处理装置(以下简称处理装置)中舱底水分离器(以下简称分离器)和舱底 水报警装置(以下简称报警装置)的要求、试验方法…...
[框架设计之道(二)]设备、任务设置及业务流程
[框架设计之道(二)]设备、任务设置及业务流程 说明 此文档是开发中对设备设置项的管理。因为硬件在使用的过程中涉及大量设置项,因此需要单独开一篇文档说明设备的设置和任务的设置。 一、设备设置 1.基础接口 /// <summary> /// 配置…...
Nuxt3+Vite批量引入图片
通过计算属性获取images文件夹所有层级下所有静态资源 <script name"MarketplaceHeader" setup lang"ts"> //批量导入静态资源图片 const importImage: any computed(() > (name: string, type png, folder images) > {const glob: Record…...
采用nodejs + socket.io实现简易聊天室功能(群聊 + 私聊)
项目演示 支持群聊以及私聊 项目代码 index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport…...
消息队列(一):需求分析
为什么要做这样一个项目? 首先,我们在之前学习的时候,就认识了一下 生产者消费者模式,这样一个模式有两大好处: 解耦合 本来有个分布式系统,A服务器 调⽤ B服务器(A给B发请求,B给A…...
ImageViewer技术实现细节
第1章 ImageViewer工具使用方法 1.1. 图像加载 1.1.1. 单图像加载 左上角菜单,“File”->“单图像”,或者Ctrl-S,弹出文件对话框,选择图像文件,当前支持bmp,png,jpg格式。 结果如下图所示: 1.1.2. 多图像加载 左上角菜单,“File”->“多图像”,或者Ctrl-M…...
MFC多文档程序,从菜单关闭一个文档和直接点击右上角的x效果不同
MFC多文档程序,从菜单关闭一个文档和直接点击右上角的x效果不同 若文档内容有修改,则前者会询问用户,是否保存修改;后者不保存修改直接关闭。 原因在于,从菜单关闭时,调用OnClose,一定会调用Sa…...
【数据结构】C++实现AVL平衡树
文章目录 1.AVL树的概念2.AVL树的实现AVL树结点的定义AVL树的插入AVL树的旋转左单旋右单旋左右双旋右左双旋插入代码 AVL树的验证AVL树的查找AVL树的修改AVL树的删除AVL树的性能 AVL树的代码测试 1.AVL树的概念 二叉搜索树虽然可以提高我们查找数据的效率,但如果插…...
图神经网络系列之序章
文章目录 一、为什么需要图神经网络?二、图的定义1.图的定义和种类2.一些关于图的重要概念2.1 子图2.2 连通图2.3 顶点的度、入度和出度2.4 边的权和网2.5 稠密图、稀疏图 3.图的存储结构3.1 邻接矩阵3.2 邻接表3.3 边集数组3.4 邻接多重表3.5 十字链表3.6 链式前向…...
Unity中 UI Shader的基本功能
文章目录 前言一、实现思路1、暴露一个 2D 类型的属性来接受UI的纹理2、设置shader的层级为TransParent半透明渲染层级,一般UI都是在这个渲染层级3、更改混合模式,是 UI 使用的纹理,该透明的地方透明 二、代码实现 前言 Unity中 UI Shader的…...
【自学开发之旅】Flask-标准化返回-连接数据库-分表-orm-migrate-增删改查(三)
业务逻辑不能用http状态码判断,应该有自己的逻辑判断。想要前端需要判断(好多if…else),所以需要标准化,标准化返回。 json标准化返回: 最外面:data,message,code三个字段。 data:返回的数据 co…...
numpy增删改查
NumPy是一个用于科学计算的Python库,它提供了一个多维数组对象以及许多用于操作这些数组的函数。下面是关于如何在NumPy中进行增删改查操作的一些基本示例: 创建NumPy数组: import numpy as np # 创建一个一维数组 arr np.array([1, 2, 3, …...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
