当前位置: 首页 > news >正文

【深度学习-注意力机制attention 在seq2seq中应用】

注意力机制

  • 为什么需要注意力机制
  • attention机制的架构总体设计
    • 一、attention本身实现
    • 评分函数
  • attention在网络模型的应用-Bahdanau 注意力
    • 加性注意力代码实现

为什么需要注意力机制

在这里插入图片描述

这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的一个句子转化为一个最终的输出,上下文context vector,然后在Decoder中使用,但这里有些问题:

  1. 如果句子很长,这个向量很难包含sequence中最早输入的哪些词的信息,那么decoder的处理必然也缺失了这一部分。
  2. 对话的过程中,大部分情况下decoder第一个的输出应该关心的权重更应该是encoder的前半部分的输入,比如这里Yes,其实应该是对are you这样一个疑问的输出,但是这就要求decoder的预测的时候有区别的针对sequence的输入做输出,现在这个结构没办法实现这个功能。

你可能会想到LSTM或者GRU也是有memory记忆功能的,解决方案:
LSTM中的memory没有办法很大,假设它的memory的大小时K的话,就需要有一个K*K的矩阵,如果太大的memory,不仅计算量大,参数太多还会容易过拟合,因此不可行

attention机制就是用来解决这个问题,attention里面memory增加的话,参数并不会增加,一句话总结就是attention就是来解决长输入在decoder时,能够找到应该关注的输入部分的问题,它最初时从机器翻译发展的,后续也扩展到了其他领域

attention机制的架构总体设计

总体架构
这就是总体的架构设计,输入a1…an,输出b1…bn 对应,注意这里的b考虑了所有的输入,这个输出带有对于每个输入的attention score,score越大,证明这个输入越重要,a在这里可以是输入,也可以是输入解码器后hidden layer的输出,那么中间蓝色框部分就是attention主体实现,它用来生成的b1到bn
举个例子:输入are you free tomorrow? 输出的时候Yes更关注的是are you,那这个的attention score就需要高一些

普通的seq2seq结构
在这里插入图片描述
带有注意力的seq2seq
在这里插入图片描述

在普通的seq2seq相比,解码器使用的上下文变量C不再仅仅是编码器的输出,而是 注意力的输出

与普通的seq2seq模型对比下,带有注意力模型的修改就分为了两部分
1.attention本身的实现
2.attention应用到模型部分

以下详述这了两部分

一、attention本身实现

先不介绍内部的一些数学处理,attention的输出实际上是对某种输入的选择倾向
输入就是要被选择的数据和对应的查询线索
输出对要选择数据的权重
举个例子
输入:the dog is running across the grass
翻译:这个小狗正在穿越草地
解码翻译这 个 小 狗 这些词的时候,注意力应该放在the dog上,这时候我们给与the dog这些词更多的权重,这时候对于输入可能的权重就是0.5 0.5 0 0 0 0

在这里插入图片描述

在数学模型方面,
键key
查询Query
值 Value

要实现的是根据键和查询生成的线索,去计算对于值Value的倾向选择,数学表达是这样的:
在这里插入图片描述
这里的a(q, ki) 一般是经过一个评分函数映射成标量和然后一个softmax操作

这里可以形象的理解一下,比如下面三组数据:

id体重->Q身高->K年龄-> V
15016050
26516523
36017521

当输入体重K 63, 身高V 170,问现在的年龄大概是多少呢?
看到表中的信息,人脑会自然猜测年龄在23和21之间,也就是在id 2和3上权重比较高,0.6* 23 +0.4* 21,这个也接近于注意力的实质,其实是根据Q和V 做评分,用以对V加权取值,这些权重值,就是注意力。
a(q, k1) v1+ a(q, k2)v2

评分函数

评分函数实际有很多种,tanh, 经过一个线性变换,或者sin cos 、加 等等,目前业内没有最好的实践

attention在网络模型的应用-Bahdanau 注意力

很多的论文都涉及注意力的使用,这块的依据是比较早和出名的Bahdanau注意力讲解。
上文seq2se模型中讲过解码器的输入是编码器的输出(上下文变量)以及解码器输入,而在有注意力的网络模型中,这个上下文变成了注意力的输出,解码器示意:
在这里插入图片描述
其中的at,i 就是注意力权重的输出
在这里插入图片描述
时间步t-1 解码器的隐状态是St-1,也是所谓的查询
ht编码器隐状态,是键也是值

加性注意力代码实现

class AdditiveAttention(nn.Module):"""加性注意力实现"""def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):super(AdditiveAttention, self).__init__(**kwargs)self.W_k = nn.Linear(key_size, num_hiddens, bias=False)self.W_q = nn.Linear(query_size, num_hiddens, bias=False)self.w_v = nn.Linear(num_hiddens, 1, bias=False)self.dropout = nn.Dropout(dropout)def forward(self, queries, keys, values, valid_lens):queries, keys = self.W_q(queries), self.W_k(keys)# 在维度扩展后,# queries的形状:(batch_size,查询的个数,1,num_hidden)# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)# 使用广播方式进行求和features = queries.unsqueeze(2) + keys.unsqueeze(1)features = torch.tanh(features)# self.w_v仅有一个输出,因此从形状中移除最后那个维度。# scores的形状:(batch_size,查询的个数,“键-值”对的个数)scores = self.w_v(features).squeeze(-1)# 这部分主要是为了遮蔽填充项,理解注意力上的时候可以先忽略它self.attention_weights = masked_softmax(scores, valid_lens)# values的形状:(batch_size,“键-值”对的个数,值的维度)return torch.bmm(self.dropout(self.attention_weights), values)

相关文章:

【深度学习-注意力机制attention 在seq2seq中应用】

注意力机制 为什么需要注意力机制attention机制的架构总体设计一、attention本身实现评分函数 attention在网络模型的应用-Bahdanau 注意力加性注意力代码实现 为什么需要注意力机制 这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的…...

详解混合类型文件(Polyglot文件)的应用生成与检测

1. 引入 混合类型文件(Polyglot文件),是指一个文件,既可以是合法的A类型,也可以是合法的B类型。 比如参考3中的文件,是一个html文件,可以用浏览器正常打开;它也是一个一个.jar文件&…...

QT之QTableView的简介

QT之QTableView的简介 QTableView 是 Qt 框架中的一个类,用于显示和编辑表格数据。它提供了一个灵活的模型/视图架构,允许用户以不同的方式显示和编辑数据。 以下是 QTableView 的一些常用函数及其用法: 1)QTableView(QWidget *pa…...

学习记忆——宫殿篇——记忆宫殿——记忆桩——知识讲解

类比 假设这些桩子好比不同的交通工具,每一种交通工具都可以助我们到达目的地,那举现在就根据你的时间以及现实情况,选择最合适自己的交通工具即可,重点在于你要熟悉每种交通工具的用途不区别。桩子也是如此,把所有的桩…...

Python lambda匿名函数

视频版教程 Python3零基础7天入门实战视频教程 前面我们所学的函数定义,都是有函数名的。 我们现在学的lambda函数是没有名称的,也就是匿名函数。 我们在只需要一次性使用的函数的时候,就可以用lambda匿名函数,简单方便快捷。 …...

成绩统计(蓝桥杯)

成绩统计 题目描述 小蓝给学生们组织了一场考试,卷面总分为 100 分,每个学生的得分都是一个 0 到 100 的整数。 如果得分至少是 60 分,则称为及格。如果得分至少为 85 分,则称为优秀。 请计算及格率和优秀率,用百分数…...

ETL与ELT理解

ETL ETL( Extract-Transform-Load),用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL模式适用于小数据量集。如果在转换过程…...

IntelliJ IDEA 2023 年下载、安装教程、好用插件推荐

文章目录 下载与安装IDEA常用插件推荐Alibaba Java Coding Guidelines(阿里巴巴Java开发规约)Key Promoter X(IDEA快捷键提示)Translation(翻译插件)Save Actions(优化保存插件)Codo…...

下载HTMLTestRunner并修改

目录 一. 下载HTMLTestRunner 二. 修改HTMLTestRunner 1. 修改内容 2. 修改原因 一. 下载HTMLTestRunner 下载报告模板地址:http://tungwaiyip.info/software/HTMLTestRunner.html 下载模块: 二. 修改HTMLTestRunner 将修改后的模块放到python安装目录下的..…...

C#回调函数学习1

回调函数(Callback Function)是一种函数指针,它指向的是由用户自己定义的回调函数。我们将这个回调函数的指针作为参数传递给另外一个函数,在这个函数工作完成后,它将通过这个回调函数的指针来回调通知调用者处理结果。…...

leetcode 232 用栈实现队列

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty): 实现 MyQueue 类: void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除并返回元素int peek() 返回队列开头…...

element UI表单验证,自定义验证规则

validator 可以为指定字段自定义验证函数——这就相当于把前边配置的东西用js按照以前的方式编写验证逻辑了。虽然麻烦点&#xff0c;但是能实现比较复杂的业务逻辑判断。 <el-form-itemlabel"中奖概率"prop"rate":rules"[{ required: true, mes…...

redis 主存复制

1. 前言 Redis的持久化机制&#xff0c;它很好的解决了单台Redis服务器由于意外情况导致Redis服务器进程退出或者Redis服务器宕机而造成的数据丢失问题。 在一定程度上保证了数据的安全性&#xff0c;即便是服务器宕机的情况下&#xff0c;也可以保证数据的丢失非常少。 通常…...

Unity Shader顶点数据疑问

1&#xff09;Unity Shader顶点数据疑问 2&#xff09;Unity 2018发布在iOS 16.3偶尔出现画面不动的问题 3&#xff09;安卓游戏启动后提示“应用程序异常” 这是第352篇UWA技术知识分享的推送&#xff0c;精选了UWA社区的热门话题&#xff0c;涵盖了UWA问答、社区帖子等技术知…...

java写一个用于生成雪花id的工具类

我们创建一个类 叫 SnowflakeIdGenerator 作为生成雪花id的工具类 然后 编写代码如下 public class SnowflakeIdGenerator {private static final long START_TIMESTAMP 1609459200000L; // 设置起始时间戳&#xff0c;可以根据需要进行调整private static final long WORKER…...

淘宝开店装修教程 (2023新版)

一、下载千牛 1. 浏览器打开淘宝 https://www.taobao.com/ 2. 进入 - 千牛卖家中心 3. 进入 - 关于千牛 4. 下载千牛 5. 下载页面 6. 下载安装桌面 二、登录千牛 1. 登录页面 2. 进入 - 千牛工作台 三、pc店铺装修 1. 进入 - pc店铺 2. 进入 - 装修页面 3. 删除没用的模块 从…...

Python傅立叶变换

1. 什么是傅里叶变换&#xff1f; 在数学中&#xff0c;变换技术用于将函数映射到与其原始函数空间不同的函数空间。傅里叶变换时也是一种变换技术&#xff0c;它可以将函数从时域空间转换到频域空间。例如以音频波为例&#xff0c;傅里叶变换可以根据其音符的音量和频率来表示…...

MATLAB向量化编程基础精讲教程

向量化编程是MATLAB中一种重要的编程技术&#xff0c;通过使用向量和矩阵运算代替循环&#xff0c;可以提高代码的执行效率和可读性。本文将介绍MATLAB向量化编程的基础知识&#xff0c;并提供多个案例代码&#xff0c;帮助读者理解和应用向量化编程。 一、向量化编程基础知识…...

【非对称加密算法】RSA算法

一、非对称加密算法 非对称加密算法使用了两个不同的密钥&#xff1a;公钥和私钥。公钥是公开的&#xff0c;可以被任何人使用&#xff0c;而私钥是只有特定的人能够使用的。这种算法的加密和解密过程使用不同的密钥&#xff0c;因此称为非对称加密算法。 在非对称加密算法中…...

【滑动窗口】438. 找到字符串中所有字母异位词

438. 找到字符串中所有字母异位词 滑动窗口解法 创建两个Map 一个记录实际需要的有效字符 另一个记录窗口内的有效字符个数初始化need每次遍历一个字符 判断是不是有效字符 如果是 更新window 另外判断window中有效字符的个数是不是等于need中有效字符的个数 如果是更新valid…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...

aurora与pcie的数据高速传输

设备&#xff1a;zynq7100&#xff1b; 开发环境&#xff1a;window&#xff1b; vivado版本&#xff1a;2021.1&#xff1b; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程&#xff0c;pc通过pcie传输给fpga&#xff0c;fpga再通过aur…...

Pandas 可视化集成:数据科学家的高效绘图指南

为什么选择 Pandas 进行数据可视化&#xff1f; 在数据科学和分析领域&#xff0c;可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具&#xff0c;如 Matplotlib、Seaborn、Plotly 等&#xff0c;但 Pandas 内置的可视化功能因其与数据结…...

十二、【ESP32全栈开发指南: IDF开发环境下cJSON使用】

一、JSON简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;具有以下核心特性&#xff1a; 完全独立于编程语言的文本格式易于人阅读和编写易于机器解析和生成基于ECMAScript标准子集 1.1 JSON语法规则 {"name"…...

npm install 相关命令

npm install 相关命令 基本安装命令 # 安装 package.json 中列出的所有依赖 npm install npm i # 简写形式# 安装特定包 npm install <package-name># 安装特定版本 npm install <package-name><version>依赖类型选项 # 安装为生产依赖&#xff08;默认&…...

【向量库】Weaviate 搜索与索引技术:从基础概念到性能优化

文章目录 零、概述一、搜索技术分类1. 向量搜索&#xff1a;捕捉语义的智能检索2. 关键字搜索&#xff1a;精确匹配的传统方案3. 混合搜索&#xff1a;语义与精确的双重保障 二、向量检索技术分类1. HNSW索引&#xff1a;大规模数据的高效引擎2. Flat索引&#xff1a;小规模数据…...